精英家教网 > 初中数学 > 题目详情

【题目】如图,于点,为等腰直角三角形,,当绕点旋转时,记.

(1)过点交射线于点,作射线交射线于点.

①依题意补全图形,求的度数;

②当时,求的长.

(2)上存在一点,且,作射线交射线于点,直接写出长度的最大值.

【答案】1)①见解析, 45°②7;(2)见解析,

【解析】

1于点H,的延长线于点,证明AHO≌AGB, 即可求得∠ODC的度数;

延长于点,利用条件可求得AKOK的长度,于是可求OD的长;

2)分析可知,点B在以O为圆心,OB为半径的圆上运动(个圆),所以当PB是圆O的切线时,PQ的值最大,据此可解.

解:(1补全图形如图所示,过点于点H,的延长线于点

∴∠AGB=AHO=C =

∴∠GAH=

∴∠OAH+HAB=GAB+HAB=,

∴∠OAH =GAB, 四边形为矩形,

为等腰直角三角形,

OA=AB,

AHO≌AGB,

AH=AG,

∴四边形为正方形,

∠OCD=45°

∠ODC=45°

延长于点

OA=5

AK=4,

OK=3,

∠ODC=45°

DK=AK=4

2)如图,

绕点旋转,

∴点B在以O为圆心,OB为半径的圆上运动(个圆),

∴当PB是圆O的切线时,PQ的值最大,

∠OPB=45°,

OQ=OP=10

.

长度的最大值是.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,聪聪想在自己家的窗口A处测量对面建筑物CD的高度,他首先量出窗口A到地面的距离(AB)为16m,又测得从A处看建筑物底部C的俯角α30°,看建筑物顶部D的仰角β53°,且ABCD都与地面垂直,点ABCD在同一平面内.

1)求ABCD之间的距离(结果保留根号).

2)求建筑物CD的高度(结果精确到1m).(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=BCDAC中点,BE平分∠ABDAC于点E,点OAB上一点,⊙OBE两点,交BD于点G,交AB于点F

1)判断直线AC⊙O的位置关系,并说明理由;

2)当BD=6AB=10时,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB6BC3动点P从点A出发,沿AC以每秒4个单位长度的速度向终点C运动.过点P(不与点AC重合)作EFAC,交ABBC于点E,交ADDC于点F,以EF为边向右作正方形EFGH设点P的运动时间为t秒.

1)①AC   .②当点FAD上时,用含t的代数式直接表示线段PF的长   

2)当点F与点D重合时,求t的值.

3)设方形EFGH的周长为l,求lt之间的函数关系式.

4)直接写出对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为12t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,以点为圆心画圆,与轴交于;两点,与轴交于两点,当时,的取值范围是____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt中,∠A=90°AC=4,将沿着斜边BC翻折,点A落在点处,点DE分别为边ACBC的中点,联结DE并延长交所在直线于点F,联结,如果为直角三角形时,那么____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,联结PC,在∠PCD内部作射线CQ与对角线BD交于点Q(与BD不重合),且∠PCQ=30°.

1)如图,当点P在边AB上时,如果BP=3,求线段PC的长;

2)当点P在射线BA上时,设,求y关于的函数解析式及定义域;

3)联结PQ,直线PQ与直线BC交于点E,如果相似,求线段BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年98日,重庆首家海底捞在来福士广场正式开始试营业,由于重庆人偏好麻辣口味,海底捞来福士店在原有番茄、红汤牛油、菌菇等多种常规锅底的基础上,专门为重庆人私人订制了一种双椒锅底.开业当天,人气爆满,番茄锅和双椒锅成为最受欢迎的两种锅底,总计销售300份,销售总额为9800元.其中双椒锅的销售单价是42元,番茄锅的销售单价为28元.

1)求开业当天番茄锅销售数量;

2)试营业一段时间后,商家发现番茄锅和双椒锅的日均销量之比为32.为了庆祝国庆,回馈广大顾客,海底捞在国庆期间推出了优惠活动,在原有售价的基础上将番茄锅降价a%,双椒锅降价a%进行销售.101日当天,番茄锅的销量比日均销量增加了a%,而双椒锅的销量比日均销量增加了2a%,结果当天这两种锅底的销售总额比日均销售总额多了a%,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.

(1)求此抛物线的解析式;

(2)求C、D两点坐标及BCD的面积;

(3)若点P在x轴上方的抛物线上,满足SPCD=SBCD,求点P的坐标.

查看答案和解析>>

同步练习册答案