精英家教网 > 初中数学 > 题目详情
如图,效果家门口的商店在装修,他发现工人正在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6cm,他想知道剩余阴影部分的面积,你能帮助小刚利用所学过的因式分解计算吗?请写出利用因式分解的求解的过程(π取3)
考点:因式分解的应用
专题:
分析:用大圆的面积减去4个小圆的面积即可得到剩余阴影部分的面积,分解因式然后把R和r的值代入计算出对应的代数式的值.
解答:解:阴影部分面积=πR2-4πr2
=π(R2-4r2
=π(R-2r)(R+2r)
=3×﹙6.8+2×1.6﹚×﹙6.8-2×1.6﹚
=108.
点评:此题考查因式分解的运用,看清题意利用圆的面积计算公式列出代数式,进一步利用提取公因式法和平方差公式因式分解解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在一次统计调查中,小明得到以下一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为(  )
A、3.5,3B、3,4
C、3,3.5D、4,3

查看答案和解析>>

科目:初中数学 来源: 题型:

受国内外复杂多变的经济环境影响,去年1至7月,原材料价格一路攀升,义乌市某服装厂每件衣服原材料的成本y1(元)与月份x(1≤x≤7,且x为整数)之间的函数关系如下表:
月份x1234567
成本(元/件)56586062646668
8至12月,随着经济环境的好转,原材料价格的涨势趋缓,每件原材料成本y2(元)与月份x的函数关系式为y2=x+62(8≤x≤12,且x为整数).
(1)请观察表格中的数据,用学过的函数相关知识求y1与x的函数关系式.
(2)若去年该衣服每件的出厂价为100元,生产每件衣服的其他成本为8元,该衣服在1至7月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤7,且x为整数); 8至12月的销售量p2(万件)与月份x满足关系式p2=-0.1x+3(8≤x≤12,且x为整数),该厂去年哪个月利润最大?并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=
1
4
x2,点M (0,1)关于x轴的对称点为N,直线l过点M交抛物线于A,B两点
(1)证明:若设直线NA为y=k1x+b1,直线NB为y=k2x+b2,求证:k1+k2=0;
(2)求△ANB面积的最小值;
(3)当点M的坐标为(0,m)(m>0,且m≠1),根据(1)(2)推测并回答下列问题(不必说明理由):
①k1+k2=0是否成立?
②△ANB面积的最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,禁渔期间,我渔政船在A处发现正北方向B处有一艘可疑船只,测得A、B两处距离为99海里,可疑船只正沿南偏东53°方向航行.我渔政船迅速沿北偏东27°方向前去拦截,2小时后刚好在C处将可疑船只拦截.求该可疑船只航行的速度.
(参考数据:sin27°≈
9
20
,cos27°≈
9
10
,tan27°≈
1
2
,sin53°≈
4
5
,cos53°≈
3
5
,tan53°≈
4
3

查看答案和解析>>

科目:初中数学 来源: 题型:

解不等式组和分式方程:
(1)
3x+2>-1
1-x<3

(2)
3x
x-1
-
2
1-x
=1

查看答案和解析>>

科目:初中数学 来源: 题型:

先化简,再求值:(1-
1
x+1
)÷
x
x2+2x+1
,其中x=(
3
+1)0+(
1
2
-1•tan60°.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算
(1)
48
÷
3
-
1
2
×
12
+
24

(2)
5
+1
2
×
5
-1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-3x+m=0的一个根是1,则m=
 
,另一个根为
 

查看答案和解析>>

同步练习册答案