精英家教网 > 初中数学 > 题目详情

【题目】已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.

(1)求∠P的度数;

(2)若点D是弧AB的中点,连接CDAB于点E,且DE·DC=20,求⊙O的面积.(π取3.14)

【答案】(1)∠P=30°;(2)31.4.

【解析】

1)连接OC,根据圆的切线的性质可得∠2+∠P90°,根据等腰三角形的性质可得∠P=∠CAO,再根据三角形外角的性质可得∠22P,进而可求出∠P的度数;(2)连接AD,根据等弧对等角得到∠ACD=∠DAE,故△ACD∽△DAE,然后根据相似比求出AD的长,再根据“直径所对的角是90°”以及ADBD得到RtADB是等腰直角三角形,根据等腰直角三角形的性质求出OA的长,进而可求出⊙O的面积.

1)连接

的切线,

,即

的一个外角,

2)连接

的中点,

,即

的直径,

为等腰直角三角形,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:

使用次数

0

1

2

3

4

5(含5次以上)

累计车费

0

0.5

0.9

1.5

同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:

使用次数

0

1

2

3

4

5

人数

5

15

10

30

25

15

)写出的值;

)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利? 说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若抛物线yx23x+cy轴的交点为(02),则下列说法正确的是(  )

A. 抛物线开口向下

B. 抛物线与x轴的交点为(﹣10),(30

C. x1时,y有最大值为0

D. 抛物线的对称轴是直线x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个钢筋三角架三边长分别为,现在要做一个和它相似的钢筋三角架,而只有长为的两根钢筋,要求以其中的一根为一边,从另一根上截两段(允许有余料)作为另两边,则不同的截法有( )

A. 一种 B. 两种 C. 三种 D. 四种或四种以上

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形DEFG的顶点D、EABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,ABC的面积是6,那么这个正方形的边长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】光明中学全体学生1100人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:

1)填写下表:

中位数

众数

随机抽取的50人的社会实践活动成绩(单位:分)

2)估计光明中学全体学生社会实践活动成绩的总分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,二次函数中的满足下表.

...

...

...

...

1)求该二次函数的解析式;

2的值等于多少;

3)若两点都在该函数的图象上,且,试比较的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数的图象与x轴的两个交点分别为(﹣10),(30),对于下列结论:①2a+b=0;②abc0;③a+b+c0;④当x1时,yx的增大而减小;其中正确的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的顶点A在坐标原点,顶点C在y轴上,OB=2。将矩形ABCD绕点O顺时针旋转60°,使点D落在x轴的点G处,得到矩形AEFG,EF与AD交于点M,过点M的反比例函数图象交FG于点N,连接DN.

(1)求反比例函数的解析式

(2)求△AMN的面积;

查看答案和解析>>

同步练习册答案