【题目】如图,在△ABC中,CA=CB,AB=10,0°<∠C<60°,AF⊥BC于点F,在FC上截取FD=FB,点E是AC上一点,连接DA、DE,且∠ADE=∠B.
(1)求证:ED=EC;
(2)若∠C=30°,求BD长;
(3)在(2)的条件下,将图中△DEC绕点D逆时针旋转得到△DE′C′,请问在旋转的过程中,以点C、E、C′、E′为顶点的四边形可以构成平行四边形吗?若可以,请求出该平行四边形的面积,若不可以,请说明理由.
【答案】(1)见解析;(2)BD=10;(3)可以,见解析,.
【解析】
(1)先判断出∠C=180°-2∠ABC,∠CDE=180°-2∠ABC,进而求出∠C=∠CDE,即可得出结论;(2)先求出角BAD=30°,进而求出BG,AG,即可得出DG,最后用勾股定理即可得出结论;(3)先判断出旋转到C落在CB的延长线上,以点C,E,C’,E’为顶点的四边形是平行四边形,再求出DH,DE即可得出结论.
解:(1)∵AC=BC,
∴∠ABC=∠BAC,
∴∠C=180°-∠ABC-∠BAC=180°-2∠ABC,
∵AF⊥BC,BF=DF,
∴AB=AD,
∴∠ADB=∠ABC,
∴∠CDE=180°-∠ADE-∠ADB=180°-2∠ABC
∴∠CDE=∠C,
∴ED=CE;
(2)∵∠C=30°,
∴∠ABC=∠ADB=∠BAC=∠ADE=75°,
∴∠BAD=30°,
过点B作BG⊥AD于G,如图1,
在Rt△ABG中,AB=10,∠BAD=30°,
∴BG=5,AG=5
∴DG=AD-AG=10-5=5(2-)
在Rt△BDG中,BD=
(3)存在,理由:
如图2,当点C’落在CB延长线上,点E’落在ED的延长线上,
由旋转知DE=DE’,DC=DC’
∴四边形CEC’E’是平行四边形,
过点D作DH⊥AC于H,
在Rt△ADH中,AD=10,∠DAH=∠BAC-∠BAD=45°,
∴DH=5
在Rt△DEH中,∠AED=∠ACB+∠CDE=60°,
∴∠EDH=30°,
∴DE=
∴CE=
∴S平行四边形CEC’E’=4S△CDE=
科目:初中数学 来源: 题型:
【题目】不透明的袋子中装有4个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、4,
(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率
(2)随机摸出两个小球,直接写出“两次取出的球标号和等于4”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,P为CD边上一点(DP<CP),DP=1,AD=2,∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.
(1)求线段PC之长;
(2)求线段PN之长;
(3)如图2,连接AC,分别交PM,PB于点E,F.求线段EF之长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
●操作发现:
在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是 (填序号即可)
①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.
●数学思考:
在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;
●类比探索:
在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.
答: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O.给出下列命题:
①∠AEB=∠AEH;②DH=EH;③HO=AE;④BC﹣BF=EH.
其中正确命题的序号是 (填上所有正确命题的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分10分)(1)如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证:.
(2)如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.
①如图2,若AB=AC=1,直接写出MN的长;
②如图3,求证MN2=DM·EN.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随若移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A .和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调査,得到如下图表(部分信息未给出):
根据以上信息解答下列问题:
(1)这次被调查的学生有多少人?
(2)求表中 的值,并补全条形统计图;
(3)若该中学约有名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?
并根据以上调査结果,就中学生如何合理使用手机给出你的一条建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,正方形ABCD,BM、DN分别是正方形的两个外角平分线,∠MAN=45°,将∠MAN绕着正方形的顶点A旋转,边AM、AN分别交两条角平分线于点M、N,联结MN.
(1)求证:△ABM∽△NDA;
(2)联结BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com