精英家教网 > 初中数学 > 题目详情

【题目】某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:

操作发现:

在等腰△ABC中,AB=AC,分别以ABAC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点FEG⊥AC于点GMBC的中点,连接MDME,则下列结论正确的是 (填序号即可)

①AF=AG=AB②MD=ME整个图形是轴对称图形;④∠DAB=∠DMB

数学思考:

在任意△ABC中,分别以ABAC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,MBC的中点,连接MDME,则MDME具有怎样的数量和位置关系?请给出证明过程;

类比探索:

在任意△ABC中,仍分别以ABAC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,MBC的中点,连接MDME,试判断△MED的形状.

答:

【答案】详见解析

【解析】

(1) 由图形的对称性易知①、②、③都正确,④∠DAB=∠DMB=450也正确。

(2)受图1△DFM≌△MGE的启发,应想到取中点构造全等来证MD=ME,证MD⊥ME就是要证∠DME=900,由△DFM≌△MGE∠EMG=∠MDF, △DFM中四个角相加为180°,∠FMG可看成三个角的和,通过变形计算可得∠DME=900

(3)在(2)的基础易知为等腰直角三解形。

解:

操作发现:①②③④。

数学思考:答:MD=ME,MD⊥ME, 证明如下:

1、MD=ME:

如图,分别取AB,AC的中点F,G,连接DF,MF,MG,EG,

∵MBC的中点,∴MF∥AC,MF=AC。

∵EG是等腰Rt△AEC斜边上的中线,

∴EG⊥ACEG=AC。

∴MF=EG。

同理可证DF=MG。

∵MF∥AC,∴∠MFA+∠BAC=1800

同理可得∠MGA+∠BAC=1800

∴∠MFA=∠MGA。

∵EG⊥AC,∴∠EGA=900

同理可得∠DFA=900

∴∠MFA+∠DFA=∠MGA=∠EGA,即∠DFM=∠MEG。

MF=EG,DF=MG,∴△DFM≌△MGE(SAS)。∴MD=ME。

2、MD⊥ME:

∵MG∥AB,∴∠MFA+∠FMG=1800

∵△DFM≌△MGE,∴∠MEG=∠MDF。

∴∠MFA+∠FMD+∠DME+∠MDF=1800

∵∠MFA+∠FMD+∠MDF=900,∴∠DME=90°,即MD⊥ME。

类比探究:答:等腰直角三解形。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程mx2﹣(m1x10

1)求证:这个一元二次方程总有两个实数根;

2)若二次函数ymx2﹣(m1x1有最大值0,则m的值为   

3)若x1x2是原方程的两根,且2x1x2+1,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,沿EF将矩形折叠,使A、C重合,ACEF交于点H.

(1)求证:△ABE≌△AGF;

(2)AB=6,BC=8,求△ABE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了贯彻减负增效精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:

(1)本次调查的学生人数是   人;

(2)图2α   度,并将图1条形统计图补充完整;

(3)请估算该校九年级学生自主学习时间不少于1.5小时有   人;

(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B40)、C80)、D88.抛物线y=ax2+bxAC两点.

(1)直接写出点A的坐标,并求出抛物线的解析式;

(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t.过点PPEABAC于点E

过点EEFAD于点F,交抛物线于点G.t为何值时,线段EG最长?

连接EQ.在点PQ运动的过程中,判断有几个时刻使得CEQ是等腰三角形?请直接写出相应的t.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.

(1)求反比例函数的解析式;

(2)求一次函数的解析式;

(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,CACBAB100°<∠C60°,AFBC于点F,在FC上截取FDFB,点EAC上一点,连接DADE,且∠ADE=∠B.

1)求证:EDEC

2)若∠C30°,求BD长;

3)在(2)的条件下,将图中△DEC绕点D逆时针旋转得到△DEC′,请问在旋转的过程中,以点CEC′、E′为顶点的四边形可以构成平行四边形吗?若可以,请求出该平行四边形的面积,若不可以,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的顶点Ax轴的正半轴上,顶点Cy轴的正半轴上,点B在双曲线x0)上,点D在双曲线x0)上,点D的坐标是 33

1)求k的值;

2)求点A和点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点G在边BC上(不与点BC重合),连接AG,作DEAG于点EBFAG于点F,设k

1)求证:AEBF

2)求证:k

3)连接DF,当∠EDF30°时,求k的值.

查看答案和解析>>

同步练习册答案