精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的顶点Ax轴的正半轴上,顶点Cy轴的正半轴上,点B在双曲线x0)上,点D在双曲线x0)上,点D的坐标是 33

1)求k的值;

2)求点A和点C的坐标.

【答案】(1)k=9,(2)A(1,0), C(0,5).

【解析】

(1)根据反比例函数过点D,将坐标代入即可求值,(2)利用全等三角形的性质,计算AM,AN,CH的长即可解题.

解:将点D代入中,

解得:k=9,

(2)过点B作BN⊥x轴于N, 过点DDM⊥x轴于M,

四边形ABCD是正方形,

∴∠BAD=90°,AB=AD,

∵∠BAN+∠ABN=90°,

∴∠BAN=∠ADM,

∴△ABN≌△DAM(AAS),

∴DM=AN=3,

设A(a,0),

∴N(a-3,0),

∵B 上,

∴BN==AM,

∵OM=a=3,整理得:a2-6a+5=0,

解得a=1或a=5(舍去),

经检验,a=1是原方程的根,

∴A(1,0),

过点D作DH⊥Y轴于H,

同理可证明△DHC≌△DMA,

∴CH=AM=2,

∴C(0,5),

综上, A(1,0), C(0,5).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,九(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,人的眼睛E、标杆顶点C和旗杆顶点A在同一直线,求旗杆AB的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.

求证:DAE≌△DCF;

求证:ABG∽△CFG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△AOB中,∠AOB=90°,点A的坐标为(4,2),BO=4,反比例函数y=的图象经过点B,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,过点C(12)分别作x轴、y轴的平行线,交直线y=﹣x+8AB两点,若反比例函数y(x0)的图象与△ABC有公共点,则k的取值范围是(  )

A. 2k12 B. 2k7 C. 7k12 D. 2k16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张正方形纸片ABCD对折,使CDAB重合,得到折痕MN后展开,ECN上一点,将△CDE沿DE所在的直线折叠,使得点C落在折痕MN上的点F处,连接AFBFBD.则下列结论中:①△ADF是等边三角形;②tan∠EBF=2-;③SADFS正方形ABCD;④BF2DF·EF.其中正确的是(  )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:

使用次数

0

1

2

3

4

5(含5次以上)

累计车费

0

0.5

0.9

1.5

同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:

使用次数

0

1

2

3

4

5

人数

5

15

10

30

25

15

)写出的值;

)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利? 说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:直角梯形OABC中,CBOA,对角线OBAC交于点DOC=2CB=2OA=4,点P为对角线CA上的一点,过点PQHOAH,交CB的延长线于点Q,连接BP,如果BPQPHA相似,则点P的坐标为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,CAB=90°ADBC于点D,点EAB的中点,ECAD交于点G,点FBC上.

1)如图1ACAB=12EFCB,求证:EF=CD

2)如图2ACAB=1EFCE,求EFEG的值.

查看答案和解析>>

同步练习册答案