精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.

(1)在图①中,请你通过观察、测量、猜想,写出AB与AP所满足的数量关系和位置关系;

(2)将△EFP沿直线l向左平移到图②的位置时,EP交AC于点Q,连接AP,BQ,猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;

(3)将△EFP沿直线l向左平移到图③的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ,你认为(2)中所猜想的BQ与AP的数量关系与位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.

【答案】(1)AB=AP,AB⊥AP (2)BQ=AP,BQ⊥AP (3)成立

【解析】

(1)根据图形就可以猜想出结论.(2)要证BQ=AP,可以转化为证明RtBCQRtACP;要证明BQAP,可以证明∠QMA=90°,只要证出∠1=2,3=4,1+3=90°即可证出.(3)类比(2)的证明就可以得到,结论仍成立.

(1)AB=AP,ABAP

证明:∵ACBCAC=BC,

∴△ABC为等腰直角三角形,

∴∠BAC=ABC=(180°﹣ACB)=45°,

又∵△ABCEFP全等,

同理可证∠PEF=45°,

∴∠BAP=45°+45°=90°,

AB=APABAP;

(2)BQ=AP;BQAP.

证明:①由已知,得EF=FP,EFFP,

∴∠EPF=45°.

又∵ACBC,

∴∠CQP=CPQ=45°.

CQ=CP.

∵在RtBCQRtACP中,

BC=AC,BCQ=ACP=90°,CQ=CP,

∴△BCQ≌△ACP(SAS),

BQ=AP.

②如图,延长BQAP于点M.

RtBCQRtACP,

∴∠1=2.

∵在RtBCQ中,∠1+3=90°,又∠3=4,

∴∠2+4=1+3=90°.

∴∠QMA=90°.

BQAP;

(3)成立.证明:∵∠EPF=45°,∴∠CPQ=45°.又∵ACBC,∴∠CQP=CPQ=45°,CQ=CP.SAS可证BCQ≌△ACP,BQ=AP.延长QBAP于点N,则∠PBN=CBQ.∵△BCQ≌△ACP,∴∠BQC=APC.RtBCQ中,∠BQC+CBQ=90°,∴∠APC+PBN=90°,∴∠PNB=90°,BQAP

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读材料并解答下列问题.

你知道吗?一些代数恒等式可以用平面图形的面积来表示,例如(2ab)(ab)2a23abb2就可以用图甲中的①或②的面积表示.

(1)请写出图乙所表示的代数恒等式;

(2)画出一个几何图形,使它的面积能表示(ab)(a3b)a24ab3b2

(3)请仿照上述式子另写一个含有ab的代数恒等式,并画出与之对应的几何图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知五边形ABCDE 是⊙O 的内接正五边形,且⊙O 的半径为1.则图中阴影部分的面积是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数满足下列条件,分别求出的取值范围.

使得增加而减小.

使得函数图象与轴的交点在轴的上方.

使得函数图象经过一、三、四象限.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AE平分,交AC延长线于F,且垂足为E,则下列结论:其中正确的结论有______填写序号

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A(O,1),B(1,2),点P在轴上运动,当点P到A、B两点的距离之差的绝对值最大时,该点记为点P1,当点P到A、B两点的距离之和最小时,该点记为点P2,以P1P2为边长的正方形的面积为

A. 1 B. C. D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程

(Ⅰ)求证:方程有两个不相等的实数根;

(Ⅱ)若此方程的一个根是1,请求出方程的另一个根;

()求以()中所得两根为边长的等腰三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,CH是外角∠ACD的平分线,BH是∠ABC的平分线,∠A =58°,求∠H的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一单杆高2.2m,两立柱之间的距离为1.6m,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.
(1)一身高0.7m的小孩站在离立柱0.4m处,其头部刚好触上绳子,求绳子最低点到地面的距离;
(2)为供孩子们打秋千,把绳子剪断后,中间系上一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳子正好各为2米,木板与地面平行,求这时木板到地面的距离.(供选用数据: ≈1.8, ≈1.9, ≈2.1)

查看答案和解析>>

同步练习册答案