精英家教网 > 初中数学 > 题目详情

【题目】如图,已知五边形ABCDE 是⊙O 的内接正五边形,且⊙O 的半径为1.则图中阴影部分的面积是(
A.
B.
C.
D.

【答案】B
【解析】解:∵五边形ABCDE 是⊙O 的内接正五边形, ∴ = = =
易知△EOA≌△AOB≌△BOC≌△COD,
∴△AOE、△AOB、△BOC、△COD的面积相等,
∴S=S扇形OAC
=
= π,
故选B
【考点精析】本题主要考查了正多边形和圆和扇形面积计算公式的相关知识点,需要掌握圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角;圆的外切四边形的两组对边的和相等;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,DAB=ABC=90°,AB=BC,E是AB的中点,CEBD

(1)求证:BE=AD;

(2)求证:AC是线段ED的垂直平分线;

(3)DBC是等腰三角形吗?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
(1)求证:△COD是等边三角形;
(2)当α=150°时,试判断△AOD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘轮船以30km/h的速度沿既定航线由南向北航行,途中接到台风警报,某台风中心正以10km/h的速度由东向西移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离AB=300km.

(1)如果这艘船不改变航向,那么它会不会进入台风影响区?

(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?

(3)假设轮船航向不变,轮船航行速度不变,求受到台风影响的时间为多少小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点D、E、F分别是边AB、AC、BC的中点,要判定四边形DBFE是菱形,下列所添加条件不正确的是(  )

A. AB=AC B. AB=BC C. BE平分∠ABC D. EF=CF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.

(1)如图1,当E是线段AC的中点时,求证:BE=EF.

(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论是否成立?若成立,请证明;若不成立,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,已知直线l1经过原点O 及A(2,2 )两点,将直线l1向右平移4个单位后得到直线l2 , 直线l2与x 轴交于点B.
(1)求直线l2的函数表达式;
(2)作∠AOB 的平分线交直线l2于点C,连接AC.求证:四边形OACB是菱形;
(3)设点P 是直线l2上一点,以P 为圆心,PB 为半径作⊙P,当⊙P 与直线l1相切时,请求出圆心P 点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.

(1)在图①中,请你通过观察、测量、猜想,写出AB与AP所满足的数量关系和位置关系;

(2)将△EFP沿直线l向左平移到图②的位置时,EP交AC于点Q,连接AP,BQ,猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;

(3)将△EFP沿直线l向左平移到图③的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ,你认为(2)中所猜想的BQ与AP的数量关系与位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.
(1)补全条形统计图.
(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?
(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?

查看答案和解析>>

同步练习册答案