精英家教网 > 初中数学 > 题目详情

已知,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,OA=OB,函数y=数学公式的图象与线段AB交于M点,且AM=BM.
(1)求点M的坐标;
(2)求直线AB的解析式.

解:(1)过点M作MC⊥x轴,MD⊥y轴,
∵AM=BM,
∴点M为AB的中点,
∵MC⊥x轴,MD⊥y轴,
∴MC∥OB,MD∥OA,
∴点C和点D分别为OA与OB的中点,
∴MC=MD,
则点M的坐标可以表示为(-a,a),
把M(-a,a)代入函数y=中,
解得a=2
则点M的坐标为(-2,2);

(2)∵则点M的坐标为(-2,2),
∴MC=2,MD=2
∴OA=OB=2MC=4
∴A(-4,0),B(0,4),
设直线AB的解析式为y=kx+b,
把点A(-4,0)和B(0,4)分别代入y=kx+b中得
解得:
则直线AB的解析式为y=x+4
分析:(1)过点M作MC⊥x轴,MD⊥y轴,根据M为AB的中点,MC∥OB,MD∥OA,利用平行线分线段成比例得到点C和点D分别为OA与OB的中点,从而得到MC=MD,设出点M的坐标代入反比例函数解析式中,求出a的值即可得到点M的坐标;
(2)根据(1)中求出的点M的坐标得到MC与MD的长,从而求出OA与OB的长,得到点A与点B的坐标,设出一次函数的解析式,把点A与点B的坐标分别代入解析式中求出k与b的值,确定出直线AB的表达式.
点评:此题考查了反比例函数与一次函数的交点问题,平行线分线段成比例,以及中位线定理,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标xOy中,反比例函数y=
k
x
的图象与y=
3
x
的图象关于x轴对称,又与直线y=ax+2交于点A(m,3).已知点M(-3,y1)、N(l,y2)和Q(3,y3)三点都在反比例函数y=
k
x
的图象上. 
(l)比较y1、y2、y3的大小;
(2)试确定a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系里,如图,已知直线:y=-x+3
2
交y轴于点A,交x轴于点B,三角板OCD如图1置,其中∠D=30°,∠OCD=90°,OD=7,把三角板OCD绕点.顺时针旋转15°,得到△OC1D1(如图2),这时OC1交AB于点E,C1D1交AB于点F.
(1)求∠EFC1的度数;
(2)求线段AD1的长;
(3)若把△OC1D1,绕点0顺时针再旋转30.得到△OC2D2,这时点B在△OC2D2的内部、外部、还是边上?证明你的判断.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标中,已知点P(3-m,2m-4)在第一象限,则实数m的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,已知直线y=kx+b与直线y=
1
2
x
平行,分别交x轴,y轴于A,B两点,且A点的横坐标是-4,以AB为边在第二象限内作矩形ABCD,使AD=
5

(1)求矩形ABCD的面积;
(2)过点D作DH⊥x轴,垂足为H,试求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为
y=-
6
x
y=-
6
x

查看答案和解析>>

同步练习册答案