精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.

(1)求这条抛物线的表达式;
(2)连结AB、BC、CD、DA,求四边形ABCD的面积;
(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.

【答案】
(1)

解:∵抛物线y=ax2+bx﹣5与y轴交于点C,

∴C(0,﹣5),

∴OC=5.

∵OC=5OB,

∴OB=1,

又点B在x轴的负半轴上,

∴B(﹣1,0).

∵抛物线经过点A(4,﹣5)和点B(﹣1,0),

,解得

∴这条抛物线的表达式为y=x2﹣4x﹣5.


(2)

解:由y=x2﹣4x﹣5,得顶点D的坐标为(2,﹣9).

连接AC,

∵点A的坐标是(4,﹣5),点C的坐标是(0,﹣5),

又SABC= ×4×5=10,SACD= ×4×4=8,

∴S四边形ABCD=SABC+SACD=18.


(3)

解:过点C作CH⊥AB,垂足为点H.

∵SABC= ×AB×CH=10,AB=5

∴CH=2

在RT△BCH中,∠BHC=90°,BC= ,BH= =3

∴tan∠CBH= =

∵在RT△BOE中,∠BOE=90°,tan∠BEO=

∵∠BEO=∠ABC,

,得EO=

∴点E的坐标为(0,


【解析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.
【考点精析】本题主要考查了二次函数的概念和二次函数的图象的相关知识点,需要掌握一般地,自变量x和因变量y之间存在如下关系:一般式:y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数;二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,AB=AC,BD,CE是角平分线,图中的等腰三角形共有( )

A. 6个 B. 5个 C. 4个 D. 3个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①②,试研究其中∠12与∠34之间的数量关系;

(2)如果我们把∠12称为四边形的外角,那么请你用文字描述上述的关系式;

(3)用你发现的结论解决下列问题:

如图,AEDE分别是四边形ABCD的外角∠NADMDA的平分线,B+C=240°,求∠E的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018120日,山西迎来了复兴号列车,与和谐号相比,复兴号列车时速更快,安全性更好.已知太原南﹣北京西全程大约500千米,复兴号”G92次列车平均每小时比某列和谐号列车多行驶40千米,其行驶时间是该列和谐号列车行驶时间的(两列车中途停留时间均除外).经查询,复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐复兴号”G92次列车从太原南到北京西需要多长时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.
(1)求证:CB是⊙O的切线;
(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(a,0),D(6,4),将线段AD平移得到BC,使B(0,b),且a,b满足|a﹣2|+=0,延长BCx轴于点E.

(1)填空:点A(      ),点B(      ),∠DAE=   

(2)求点C和点E的坐标;

(3)设点Px轴上的一动点(不与点A、E重合),且PA>AE,探究∠APC∠PCB的数量关系?写出你的结论并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一单杆高2.2m,两立柱之间的距离为1.6m,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.
(1)一身高0.7m的小孩站在离立柱0.4m处,其头部刚好触上绳子,求绳子最低点到地面的距离;
(2)为供孩子们打秋千,把绳子剪断后,中间系上一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳子正好各为2米,木板与地面平行,求这时木板到地面的距离.(供选用数据: ≈1.8, ≈1.9, ≈2.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线经过A(﹣1,0),C(0,﹣5)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)设点P为抛物线上的一个动点,连接PB、PC,若△BPC是以BC为直角边的直角三角形,求此时点P的坐标;
(3)在抛物线上BC段有另一个动点Q,以点Q为圆心作⊙Q,使得⊙Q与直线BC相切,在运动的过程中是否存在一个最大⊙Q?若存在,请直接写出最大⊙Q的半径;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案