精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在△ABC中,AB=AC,BD,CE是角平分线,图中的等腰三角形共有( )

A. 6个 B. 5个 C. 4个 D. 3个

【答案】A

【解析】

根据已知条件,结合图形,可得知等腰三角形有ABC,AED,BOC,EOD,BEDEDC6个.

①∵AB=AC,
∴△ABC是等腰三角形;
②∵AB=AC,
∴∠B=C,
BD,CE是角平分线,
∴∠ABD=ACE,OBC=OCB,
∴△BOC是等腰三角形;
③∵△EOB≌△DOC(ASA),
OE=OD,EDBC
∴△EOD是等腰三角形;
④∵EDBC,
∴∠AED=B,ADE=C,
∴∠AED=ADE,
∴△AED是等腰三角形;
⑤∵△ABC是等腰三角形,BD,CE是角平分线,
∴∠ABC=ACB,ECB=DBC,
又∵BC=BC,
∴△EBC≌△DCB,
BE=CD,
AE=AD,
A=A,
∴△AED∽△ABC,
∴∠AED=ABC,
∴∠ABC+BED=180°,
DEBC,
∴∠EDB=DBC=EBD,
ED=EB,
BED是等腰三角形,
同理可证EDC是等腰三角形.
故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC中,ACB=90°,D为BC的中点,DEAB,垂足为E,过点B作BFAC交DE的延长线于点F,连接CF.

(1)求证:ADCF

(2)连接AF,试判断ACF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为(  )

A. 小时 B. 小时 C. 小时 D. 小时

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2 台.
(1)求甲、乙两种品牌空调的进货价;
(2)该商场拟用不超过16000 元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请你帮该商场设计一种进货方案,使得在售完这10 台空调后获利最大,并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD和菱形ECGF的边长分别为2和4,∠A=120°.则阴影部分面积是 . (结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,AC=BC,D为△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=AC.

(1)求∠CDE的度数;

(2)若点M在DE上,且DC=DM,求证:ME=BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.
(1)求证:BE=CE;
(2)求∠CBF的度数;
(3)若AB=6,求 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究函数y= x的图象与性质. 小东根据学习函数的经验,对函数y= x的图象与性质进行了探究.
下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数y= x的自变量x的取值范围是
(2)下表是y与x的几组对应值,求m的值;

x

﹣4

﹣3

﹣2

﹣1

1

2

3

4

y

m


(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(﹣2, ),结合函数的图象,写出该函数的其它性质(一条即可)
(5)根据函数图象估算方程 x=2的根为 . (精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.

(1)求这条抛物线的表达式;
(2)连结AB、BC、CD、DA,求四边形ABCD的面积;
(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.

查看答案和解析>>

同步练习册答案