精英家教网 > 初中数学 > 题目详情

【题目】已知点P(3﹣3a,1﹣2a)在第四象限,则a的取值范围在数轴上表示正确的是(
A.
B.
C.
D.

【答案】C
【解析】解:∵点P(3﹣3a,1﹣2a)在第四象限, ∴
解不等式①得:a<1;
解不等式②得:a>
∴a的取值范围为 <a<1.
故选C.
【考点精析】根据题目的已知条件,利用不等式的解集在数轴上的表示和一元一次不等式组的解法的相关知识可以得到问题的答案,需要掌握不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈;解法:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集.如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 ).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCDEBC,垂足为点E,连接ACDE于点F,点GAF的中点,∠ACD=2ACB.若DG=3EC=1,则DE的长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点Q为坐标系上任意一点,某图形上的所有点在∠Q的内部(含角的边),这时我们把∠Q的最小角叫做该图形的视角.如图1,矩形ABCD,作射线OA,OB,则称∠AOB为矩形ABCD的视角.
(1)如图1,矩形ABCD,A(﹣ ,1),B( ,1),C( ,3),D(﹣ ,3),直接写出视角∠AOB的度数;
(2)在(1)的条件下,在射线CB上有一点Q,使得矩形ABCD的视角∠AQB=60°,求点Q的坐标;
(3)如图2,⊙P的半径为1,点P(1, ),点Q在x轴上,且⊙P的视角∠EQF的度数大于60°,若Q(a,0),求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,点Bx轴上,且

求点B的坐标;

的面积;

y轴上是否存在P,使以ABP三点为顶点的三角形的面积为10?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据 ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC△DBE均为等腰直角三角形.

(1)求证:AD=CE;

(2)求证:ADCE垂直.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的小正方形组成的网格中,AOB的三个顶点均在格点上,点AB的坐标分别为(32)(13)AOB绕点O逆时针旋转90后得到A1OB1

1)在网格中画出A1OB1,并标上字母;

2)点A关于O点中心对称的点的坐标为___________

3)点A1的坐标为________

4A1OB1的面积为_______________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,按下列条件得到的四边形EFGH不一定是平行四边形的是( )

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.

(1)求足球和篮球的单价各是多少元?

(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?

查看答案和解析>>

同步练习册答案