精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD和四边形EFGH相似,求∠α、∠β 的大小和EH的长度.
考点:相似多边形的性质
专题:
分析:观察图形,根据相似多边形的对应角相等可得出∠α=∠B=83°,∠D=∠H=118°,再根据四边形的内角和等于360°可计算求出β的大小,然后根据相似多边形的对应边成比例即可求出EH的长度.
解答:解:∵四边形ABCD和四边形EFGH相似,
∴∠α=∠B=83°,∠D=∠H=118°,∠β=360°-(83°+78°+118°)=81°,EH:AD=HG:DC,
EH
21
=
24
18

∴EH=28(cm).
答:∠α=83°,∠β=81°,EH=28cm.
点评:本题考查了相似多边形的对应角相等,对应边成比例的性质,四边形的内角和等于360°,熟记性质与公式是求解的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

解方程:
(1)
1
x
=
5
x+3

(2)
x
x-1
=
3
2x-2
-2;
(3)
2
2x-1
=
4
4x2-1

(4)
3
x2+2x
-
1
x2-2x
=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知∠AOC是一平角,OB是任一条射线,OD,OE分别是∠AOB,∠BOC的平分线.
(1)画出图形;
(2)求∠DOE的大小;
(3)指出∠BOE的余角;
(4)指出∠EOC的余角和补角.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(
1
x3
-
1
x2
+
1
x
)•x3=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数抛物线的对称轴是x=1,与x轴的一个交点是(-2,0),与y轴交于(0,12),求该二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读理解:若两个含有二次根式的代数式相乘,积不含有二次根式,则称这两个代数式互为有理化因式.例如,
2
-1与
2
+1、2
3
-3
5
与2
3
+3
5
等都是互为有理化因式.
在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号.
例如:
1
2
+
3
=
(
3
-
2
)
(
3
+
2
)(
3
-
2
)
=
3
-
2

1
1+
2
=
(
2
-1)
(
2
+1)(
2
-1)
=
2
-1.
应用提升:(1)仿照上述方法,化去分母中的根号 
1
6
+
7

(2)计算 
1
1+
2
+
1
2
+
3
+
1
3
+
4
+…+
1
2013
+
2014

查看答案和解析>>

科目:初中数学 来源: 题型:

先化简再求值:
(1)(
x2
x-2
+
4
2-x
)•
1
x2+2x
,其中x=
6

(2)
a2+2a+1
a2-1
-
a
a-1
,其中a=
3
+1.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
1
a
•(-a)
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下(单位:环):
甲:7,8,7,8,10
乙:7,8,8,9,8.
(1)已知甲射击成绩的方差S2=1.2,求乙射击成绩的方差;
(2)如果你是教练员,你认为应当选谁去参加比赛呢?为什么?

查看答案和解析>>

同步练习册答案