精英家教网 > 初中数学 > 题目详情

【题目】等腰ABC中,AB=AC=5,ABC的面积为10,则BC=_____

【答案】2或4

【解析】

CDABD则∠ADC=BDC=90°,由三角形的面积求出CD由勾股定理求出AD分两种情况①等腰△ABC为锐角三角形时求出BD由勾股定理求出BC即可②等腰△ABC为钝角三角形时求出BD由勾股定理求出BC即可

CDABD则∠ADC=BDC=90°,ABC的面积=ABCD=×5×CD=10解得CD=4AD===3

分两种情况

①等腰△ABC为锐角三角形时如图1所示

BD=ABAD=2BC===2

②等腰△ABC为钝角三角形时如图2所示

BD=AB+AD=8BD===4

综上所述BC的长为24

故答案为:24

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:

次数

1

2

3

4

5

6

7

8

9

10

黑棋数

2

5

1

5

4

7

4

3

3

6

根据以上数据,解答下列问题:

(I)直接填空:第10次摸棋子摸到黑棋子的频率为   

(Ⅱ)试估算袋中的白棋子数量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连接DF,CF.

(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF,CF的数量关系和位置关系(不用证明);

(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;

(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC= ,求此时线段CF的长(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】铁路货运调度站有A、B两个信号灯,在灯这旁停靠着甲、乙、丙三列火车.它们中最长的车长与居中车长之差等于居中车长与最短车长之差,其中乙车的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A信号灯处,而车头则冲着B信号灯的方向,乙车的车尾则位于B信号灯处,车头则冲着A的方向,现在,三列火车同时出发向前行驶,3秒之后三列火车的车头恰好相遇,再过9秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直到完全错开一共用了_____秒钟.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用表示直角三角形的两直角边(),下列四个说法:

.

其中说法正确的是 …………………………………………………………( )

A. ①② B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC是一张等腰直角三角形纸板,∠B=90°,AB=BC=1.

(1)要在这张纸板上剪出一个正方形,使这个正方形的四个顶点都在ABC的边上.小林设计出了一种剪法,如图1所示.请你再设计出一种不同于图1的剪法,并在图2中画出来.

(2)若按照小林设计的图1所示的剪法来进行裁剪,记图1为第一次裁剪,得到1个正方形,将它的面积记为,则=___________;在余下的2个三角形中还按照小林设计的剪法进行第二次裁剪(如图3),得到2个新的正方形,将此次所得2个正方形的面积的记为,则=___________;在余下的4个三角形中再按照小林设计的的剪法进行第三次裁剪(如图4),得到4个新的正方形,将此次所得4个正方形的面积的记为;按照同样的方法继续操作下去……,第次裁剪得到_________个新的正方形,它们的面积的=______________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小刘从家里骑自行车出发,去镇上超市途中碰到妹妹甜甜走路从镇上回家,小刘在超市买完东西回家,在回去的路上又碰到了甜甜,便载甜甜一起回家,结果小刘比正常速度回家的时间晚了3分钟,二人离镇的距离S(千米)和小刘从家出发后的时间t(分钟)之间的关系如图所示,(假设二人之间交流时间忽略不计)

(1)小刘家离镇上的距离   

(2)小刘和甜甜第1次相遇时离镇上距离是多少?

(3)小刘从家里出发到回家所用的时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是以BC为底的等腰三角形,AD是边BC上的高,点EF分别是ABAC的中点.

1)求证:四边形AEDF是菱形;

2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上有A,B两点,分别代表﹣40,20,两只电子蚂蚁甲,乙分别从AB两点同时出发,甲沿线段AB3个单位长度/秒的速度向右运动,甲到达点B处时运动停止,乙沿BA方向以5个单位长度/秒的速度向左运动.

(1)A,B两点间的距离为   个单位长度;甲到达B点时共运动了   秒.

(2)甲,乙在数轴上的哪个点相遇?

(3)多少秒时,甲、乙相距28个单位长度?

(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲,乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.

查看答案和解析>>

同步练习册答案