精英家教网 > 初中数学 > 题目详情

【题目】如图,已知在ABCADE中,∠BAC=DAE=90°AB=ACAD=AE,点CDE三点在同一条直线上,连接BDBE.以下四个结论:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中结论正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

如图:
①∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,

,

∴△ABD≌△ACE(SAS),
∴BD=CE,

∴①正确;
②∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,

∴②正确;
∵△ABD≌△ACE,
∴∠ABD=∠ACE.
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°.
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
∴∠FDC=90°.
∴BD⊥CE,

∴③正确;

④∵∠BAC=∠DAE=90°,∠BAC+∠DAE+BAE+∠DAC=360°,

∴∠BAE+∠DAC=180°,正确.

所以①②③④都正确,共计4.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE,则∠AFB=_____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,点DBC的中点,点E△ABC内一点,若∠AEB=∠CED=90°,AE=BE,CE=DE=2,则图中阴影部分的面积等于__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,将点向右平移个单位到点,再将点绕坐标原点顺时针旋转到点.直接写出点的坐标;23.

在平面直角坐标系中,将第二象限内的点向右平移个单位到第一象限点,再将点绕坐标原点顺时针旋转到点,直接写出点的坐标;

在平面直角坐标系中.将点沿水平方向平移个单位到点,再将点绕坐标原点顺时针旋转到点,直接写出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,∠ABD、CDB的平分线BE、DF分别交边AD、BC于点E、F.

(1)求证:四边形BEDF为平行四边形;

(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.

(3)在(2)的条件下,当AE=3时,求四边形BEDF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.

(1)观察猜想:如图(1),当点D在线段BC上时,

①BC与CF的位置关系是:   

②BC、CD、CF之间的数量关系为:   (将结论直接写在横线上)

(2)数学思考:如图(2),当点D在线段CB的延长线上时,上述①、②中的结论是否仍然成立?若成立,请给予证明,若不成立,请你写出正确结论再给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC=90°,AB=AC,直线MN经过点A,过点BBDMND,过CCEMNE.

(1)求证:ABD≌△CAE;

(2)若BD=12cm,DE=20cm,求CE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,AC=BC,ABC的高CD与角平分线AE相交点F,过点CCHAEG,交ABH.

(1)直接写出∠CFE的度数________;

(2)求证:CF=BH.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C

处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最

短距离为 cm.

查看答案和解析>>

同步练习册答案