【题目】如图①,E是AB延长线上一点,分别以AB、BE为一边在直线AE同侧作正方形ABCD和正方形BEFG,连接AG、CE.
(1)试探究线段AG与CE的大小关系,并证明你的结论;
(2)若AG恰平分∠BAC,且BE=1,试求AB的长;
(3)将正方形BEFG绕点B逆时针旋转一个锐角后,如图②,问(1)中结论是否仍然成立,说明理由.
【答案】(1)AG=CE.,理由见解析;(2)+1;;(3)AG=CE仍然成立,理由见解析;
【解析】
(1)根据正方形的性质可得AB=CB,BG=BE,∠ABG=∠CBE=90°,然后利用“边角边”证明△ABG和△CBE全等,再根据全等三角形对应边相等即可得证;
(2)利用角平分线的性质以及正方形的性质得出MC=MG,进而利用勾股定理得出GC的长,即可得出AB的长;
(3)先求出∠ABG=∠CBE,然后利用“边角边”证明△ABG和△CBE全等,再根据全等三角形对应边相等即可得证.
(1)AG=CE.
理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABG=∠CBE=90°,
在△ABG和△CBE中,
∵ ,
∴△ABG≌△CBE(SAS),
∴AG=CE;
(2)过点G作GM⊥AC于点M,
∵AG恰平分∠BAC,MG⊥AC,GB⊥AB,
∴BG=MG,
∵BE=1,
∴MG=BG=1,
∵AC平分∠DCB,
∴∠BCM=45°,
∴MC=MG=1,
∴GC= ,
∴AB的长为:AB=BC=+1;
(3)AG=CE仍然成立.
理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABC=∠EBG=90°,
∵∠ABG=∠ABC∠CBG,
∠CBE=∠EBG∠CBG,
∴∠ABG=∠CBE,
在△ABG和△CBE中,
∵ ,
∴△ABG≌△CBE(SAS),
∴AG=CE.
科目:初中数学 来源: 题型:
【题目】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用12分钟追上甲;④乙到达终点时,甲离终点还有360米;其中正确的结论有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.
(1)求y关于x的函数关系式(不要求写出x的取值范围);
(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=﹣x2+bx+c经过点A(4,0)和B(1,0),与y轴交于点C.
(1)求出抛物线的解析式;
(2)求点C的坐标及抛物线的顶点坐标;
(3)设直线AC的解析式为y2=mx+n,请直接写出当y1<y2时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为.
A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新春佳节来临,某公司组织10辆汽车装运苹果、芦柑、香梨三种水果共60吨去外地销售,要求10辆汽车全部装满,每辆汽车只能装运同一种水果,且装运每种水果的车辆都不少于2辆,根据下表提供的信息,解答以下问题:
苹果 | 芦柑 | 香梨 | |
每辆汽车载货量吨 | 7 | 6 | 5 |
每车水果获利元 | 2500 | 3000 | 2000 |
设装运苹果的车辆为x辆,装运芦柑的车辆为y辆,求y与x之间的函数关系式,并直接写出x的取值范围
用w来表示销售获得的利润,那么怎样安排车辆能使此次销售获利最大?并求出w的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.
求证:
(1)AD=BD;
(2)DF是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为提升硬件设施,决定采购80台电脑,现有A,B两种型号的电脑可供选择.已知每台A型电脑比B型的贵2000元,2台A型电脑与3台B型电脑共需24000元.
(1)分别求A,B两种型号电脑的单价;
(2)若A,B两种型号电脑的采购总价不高于38万元,则A型电脑最多采购多少台?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数y=ax2+bx+c的图象过点(﹣1,0)和(m,0),请思考下列判断:①abc<0;②4a+c<2b;③=1﹣;④am2+(2a+b)m+a+b+c<0;⑤|am+a|=正确的是( )
A. ①③⑤ B. ①②③④⑤ C. ①③④ D. ①②③⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com