【题目】已知二次函数的部分图象如图所示,则关于的一元二次方程的解为 .
【答案】x1=-1或x2=3.
【解析】
试题由二次函数y=﹣x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+2x+m=0的解.
解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),
∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,
∴交点坐标为(﹣1,0)
∴当x=﹣1或x=3时,函数值y=0,
即﹣x2+2x+m=0,
∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.
故答案为:x1=﹣1或x2=3.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.则下列结论:①abc>0;②9a+3b+c>0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为﹣;⑤抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<2<x2,且x1+x2>4,则y1>y2.其中正确的结论有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的顶点A和对称中心在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为8,则k的值为( )
A. 8 B. 3 C. 2 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A坐标(6,0),点B在y轴上,点C在第三象限角平分线上,动点P、Q同时从点O出发,点P以1cm/s 的速度沿O→A→B匀速运动到终点B;点Q沿O→C→B→A运动到终点A,点Q在线段OC、CB、BA上分别作匀速运动,速度分别为V1cm/s、V2cm/s、V3cm/s.设点P运动的时间为t(s),△OPQ的面积为S(cm2),已知S与t之间的部分函数关系如图(2)中的曲线段OE、曲线段EF和线段FG所示.
(1)V1= ,V2= ;
(2)求曲线段EF的解析式;
(3)补全函数图象(请标注必要的数据);
(4)当点P、Q在运动过程中是否存在这样的t,使得直线PQ把四边形OABC的面积分成11:13两部分,若存在直接写出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠C=120°,AD=2AB=4,点H、G分别是边CD、BC上的动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF.则EF的最大值与最小值的差为( )
A. 1 B. ﹣1 C. D. 2﹣
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)我们已经知道,在中,如果,则,下面我们继续研究:如图①,在中,如果,则与的大小关系如何?为此,我们把沿的平分线翻折,因为,所以点落在边的点处,如图②所示,然后把纸展平,连接,接下来,你能推出与的大小关系了吗?试写出说理过程.
(2)如图③,在中,是角平分线,且,求证:.
(3)在(2)的条件下,若点、分别为、上的动点,且,,则的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:学习了分式运算后,老师布置了这样一道计算题:,甲、乙两位同学的解答过程分别如下:
甲同学:
①
②
③
④
乙同学:
①
②
③
④
老师发现这两位同学的解答过程都有错误.
请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正.
(1)我选择________同学的解答过程进行分析. (填“甲”或“乙”)
(2)该同学的解答从第________步开始出现错误(填序号),错误的原因是________;
(3)请写出正确解答过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com