精英家教网 > 初中数学 > 题目详情

【题目】如图RtABCABC=90°,AB为直径的⊙OAC于点DEBC的中点连接DE.

(1)求证:DE是⊙O的切线;

(2)若∠BAC=30°,DE=3,AD的长.

【答案】(1)详见解析;(2)9.

【解析】

试题(1)如图,作辅助线;根据题意结合图形,证明∠ODE=90°,即可解决问题.

(2)首先求出BC=6,进而求出BD的值;运用直角三角形的性质求出AD的值,即可解决问题.

试题解析:(1)连接OD、BD,

AB为⊙O的直径,

∴∠ADB=CDB=90°;

又∵点EBC的中点,

BE=DE,

∴∠BDE=EBD;

OA=OD,

∴∠OAD=ODA;

又∵∠OAD+OBD=90°,EBD+OBD=90°,

∴∠OAD=EBD,即∠ODA=BDE;

∴∠ODE=BDE+ODB=ODA+ODB=90°,

又∵点D在⊙O上,

DE是圆⊙O的切线.

(2)解:由(1)知BC=2DE=6,

又∵∠CBD=BAC=30°,

CD=3,BD=3

AB=6

由勾股定理得:AD=9.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知的直径,点延长线上一点,的弦,

(1)求证:直线的切线;

(2)若,垂足为的半径为,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C,D两点.点Px轴上的一个动点.

(1)求此抛物线的解析式;

(2)当PA+PB的值最小时,求点P的坐标;

(3)抛物线上是否存在一点Q(QB不重合),使CDQ的面积等于BCD的面积?若存在,直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PT是⊙O的切线,T为切点,PA是割线,交⊙OAB两点,与直径CT交于点D.已知CD2AD3BD4,那PB___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分9分)如图,点ORt△ABC斜边AB上的一点,以OA为半径的⊙OBC切于点D,与AC交于点E,连接AD

1)求证:AD平分∠BAC

2)若∠BAC = 60°OA = 2,求阴影部分的面积(结果保留).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60°,则它们重叠部分的面积为(  )

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,Aa0),B0a),等腰直角三角形ODC的斜边经过点BOEAC,交ACE,若OE2,则△BOD与△AOE的面积之差为(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.

(1)甲,乙两公司单独完成此项工程,各需多少天?

(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一条船上午点在处望见西南方向有一座灯塔(如图),此时测得船和灯塔相距海里,船以每小时海里的速度向南偏西的方向航行到处,这时望见灯塔在船的正北方向.(参考数据:).

求几点钟船到达处;

求船到达处时与灯塔之间的距离.

查看答案和解析>>

同步练习册答案