【题目】如图,已知直角三角形的直角边在轴上,双曲线与直角边交于点,与斜边交于点,,则的面积为________.
【答案】4
【解析】
作DE⊥OA于E点,易得DE∥AB,根据三角形相似的判定得到Rt△OED∽Rt△OAB,则DE:AB=OE:OA=OD:OB,而OD=OB,即OB=3OD,可得到AB=3DE,OA=3OE,设D点坐标为(a,),则B点坐标为(3a,),可分别得到A点坐标为(3a,0),C点坐标为(3a,),然后利用S△OBC=OABC进行计算即可.
作DE⊥OA于E点,如图,
∵∠OAB=90°,
∴DE∥AB,
∴Rt△OED∽Rt△OAB,
∴DE:AB=OE:OA=OD:OB,
而OD=OB,即OB=3OD,
∴AB=3DE,OA=3OE,
设D点坐标为(a,),则B点坐标为(3a,),
∴A点坐标为(3a,0),C点的横坐标为3a,
而C点在y=的图象上,
把x=3a代入y=得y=,
∴C点坐标为(3a,),
∴S△OBC=OABC=3a()=4.
故答案为:4.
科目:初中数学 来源: 题型:
【题目】如图1,在长方形中,,,点在线段上以的速度由向终点运动,同时,点在线段上由点向终点运动,它们运动的时间为.
(解决问题)
若点的运动速度与点的运动速度相等,当时,回答下面的问题:
(1);
(2)此时与是否全等,请说明理由;
(3)求证:;
(变式探究)
若点的运动速度为,是否存在实数,使得与全等?若存在,请直接写出相应的的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的直径AB=12cm,AM和BN是它的两条切线,DE与⊙O相切于点E,并与AM,BN分别相交于D,C两点.
(1)若∠ADC=122°,求∠BCD的度数;
(2)设AD=x,BC=y,求y关于x的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,以为一边向上作等边三角形,点在垂直平分线上,且,连接,,.
(1)判断的形状,并说明理由;
(2)求证:;
(3)填空:
①若,相交于点,则的度数为______.
②在射线上有一动点,若为等腰三角形,则的度数为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.
依据以上信息解答以下问题:
(1)求样本容量;
(2)直接写出样本容量的平均数,众数和中位数;
(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加热前的温度为15 ℃,加热5分钟后温度达到60 ℃.
(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为预防疾病,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量(mg)与燃烧时间(分钟)成正比例;燃烧后, 与成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:
(1)求药物燃烧时与的函数关系式.(2)求药物燃烧后与的函数关系式.
(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象交轴于点和点,交轴于点.
求这个二次函数的表达式;
若点在第二象限内的抛物线上,求面积的最大值和此时点的坐标;
在平面直角坐标系内,是否存在点,使,,,四点构成平行四边形?若存在,直接写出点的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com