精英家教网 > 初中数学 > 题目详情
8.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作∠DAF=60°,在射线AF上截取点F,使AF=AD,过D作DE∥AF,过F作EF∥AD,DE、EF交于点E,连接CF
(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;
(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;
(3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.

分析 (1)根据已知得出AF=AD,AB=BC=AC,∠BAC=∠DAF=60°,求出∠BAD=CAF,证△BAD≌△CAF,推出CF=BD即可;
(2)求出∠BAD=∠CAF,根据SAS证△BAD≌△CAF,推出BD=CF即可;
(3)画出图形后,根据SAS证△BAD≌△CAF,推出CF=BD即可.

解答 (1)证明:∵菱形AFED,
∴AF=AD,
∵△ABC是等边三角形,
∴AB=AC=BC,∠BAC=60°=∠DAF,
∴∠BAC-∠DAC=∠DAF-∠DAC,
即∠BAD=∠CAF,
∵在△BAD和△CAF中
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAF}\\{AD=AF}\end{array}\right.$,
∴△BAD≌△CAF,
∴CF=BD,
∴CF+CD=BD+CD=BC=AC,
即①BD=CF,②AC=CF+CD.
(2)AC=CF+CD不成立,AC、CF、CD之间存在的数量关系是AC=CF-CD,
理由是:由(1)知:AB=AC=BC,AD=AF,∠BAC=∠DAF=60°,
∴∠BAC+∠DAC=∠DAF+∠DAC,
即∠BAD=∠CAF,
∵在△BAD和△CAF中
$\left\{\begin{array}{l}{AC=AB}\\{∠BAD=∠CAF}\\{AD=AF}\end{array}\right.$,
∴△BAD≌△CAF,
∴BD=CF,
∴CF-CD=BD-CD=BC=AC,
即AC=CF-CD.
(3)AC=CD-CF.理由是:
∵∠BAC=∠DAF=60°,
∴∠DAB=∠CAF,
∵在△BAD和△CAF中
$\left\{\begin{array}{l}{AB=AC}\\{∠DAB=∠FAC}\\{AD=AF}\end{array}\right.$,
∴△BAD≌△CAF(SAS),
∴CF=BD,
∴CD-CF=CD-BD=BC=AC,
即AC=CD-CF.

点评 本题考查了全等三角形的性质和判定,等边三角形的性质,菱形的性质的应用,主要考查学生的推理能力,注意:证明过程类似,题目具有一定的代表性,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.先化简,再求值:3(x-y)-2(x+y)+2,其中x=-1,$y=-\frac{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图(1),在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.容易证得:CE=CF;
(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE、BE、GD三线段之间的数量关系,并证明你的结论.
(2)运用(1)中解答所积累的经验和知识,完成下面两题:
①如图(2),在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α°,∠ECG=β°,试探索当α和β满足什么关系时,图(1)中GE、BE、GD三线段之间的关系仍然成立,并说明理由.
②在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图(3)).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?若不变,请直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.霞霞和瑶瑶两位学生在数学活动课中,把长为30cm,宽为10cm的长方形白纸条粘合起来,霞霞按图(1)所示方法粘合起来得到长方形ABCD,粘合部分的长度为acm;瑶瑶按图(2)所示方法粘合起来得到长方形A1B1C1D1,粘合部分的长度为bcm.

图形理解:
若霞霞和瑶瑶两位学生按各自要求分别粘合2张白纸条(如图3),则DC=60-acm,D1C1=20-bcm(用a或b的代数式表示);若霞霞和瑶瑶两位学生按各自要求分别粘合n张白纸条(如图1、2),则DC=30n-a(n-1)cm(用a和n的代数式表示),D1C1=10n-b(n-1)cm(用b和n的代数式表示).
问题解决:
若a=b=6,霞霞用7张为30cm,宽为10cm的长方形白纸条粘合成一个长方形ABCD,瑶瑶用n张长为30cm,宽为10cm的长方形白纸条粘合成一个长方形A1B1C1D1.若长方形ABCD的面积与长方形A1B1C1D1的面积相等,求n的值?
拓展应用:
若a=6,b=4,现有长为30cm,宽为10cm的长方形白纸条共30张.问如何分配30张长方形白纸条,才能使霞霞和瑶瑶按各自要求粘合起来的长方形面积相等(要求30张长方形白纸条全部用完)?若能,请求出霞霞和瑶瑶分别分配到几张长方形白纸条;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在Rt△ABO中,顶点A是双曲线y=$\frac{k}{x}$与直线y=-x+(k+1)在第四象限的交点,AB⊥x轴于B且S△ABO=1.5.
(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.四边形ABCD和四边形DEFG都是正方形,点H是BF的中点,连接HA,HG.
(1)若三点B、D、F在同一直线上,如图1,探索HA、HG的数量和位置关系,并给予证明;
(2)如图2,若三点B、D、F不在同一直线上,那么(1)中的结论是否仍然成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在正方形ABCD中,E、F分别是CD、AD上的一点,连接BF、FE,DE=CE,且∠BFE=∠FBC
(1)直接写出∠DEF+∠DFE的值90°;
(2)求:$\frac{AF}{AB}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.把下列各数填在相应的集合里-0.3,1,532,0,-50%,$\frac{3}{4}$,-100
整数集:{    …};
分数集:{    …};
负有理数集:{ …}.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.甲、乙、丙三地的海拔高度分别为50米,-5米和-15米,那么最高的地方比最低的地方高(  )
A.35米B.25米C.55米D.65米

查看答案和解析>>

同步练习册答案