精英家教网 > 初中数学 > 题目详情

如图①,已知等腰梯形ABCD的周长为48,面积为S,AB∥CD,∠ADC=60°,设AB=3x.
(1)用x表示AD和CD;
(2)用x表示S,并求S的最大值;
(3)如图②,当S取最大值时,等腰梯形ABCD的四个顶点都在⊙O上,点E和点F分别是AB和CD的中点,求⊙O的半径R的值.

(1)AD=18-2x,CD=16+x;(2)S=-2(x-2)2+72,当x=2时,S有最大值72;(3)R=2

解析试题分析:(1)作AH⊥CD于H,BG⊥CD于G,如图①,易得四边形AHGB为矩形,则HG=AB=3x,再根据等腰梯形的性质得AD=BC,DH=CG,在Rt△ADH中,设DH=t,根据含30度的直角三角形三边的关系得AD=2t,AH=t,然后根据等腰梯形ABCD的周长为48得3x+2t+t+3x+t+2t=48,解得t=8-x,于是可得AD=18-2x,CD=16+x;
(2)根据梯形的面积公式计算可得到S=-2x2+8x+64,再进行配方得S=-2(x-2)2+72,然后根据二次函数的最值问题求解;
(3)连结OA、OD,如图②,由(2)得到x=2时,则AB=6,CD=18,等腰梯形的高为6,所以AE=3,DF=9,由于点E和点F分别是AB和CD的中点,根据等腰梯形的性质得直线EF为等腰梯形ABCD的对称轴,所以EF垂直平分AB和CD,EF为等腰梯形ABCD的高,即EF=6,根据垂径定理的推论得等腰梯形ABCD的外接圆的圆心O在EF上,设OE=a,则OF=6-a,在Rt△AOE中,利用勾股定理得a2+32=R2,在Rt△ODF中,利用勾股定理得(6-a)2+92=R2,然后消去R得到a的方程a2+32=(6-a)2+92,解得a=5,最后利用R2=(52+32求解.
试题解析:(1)作AH⊥CD于H,BG⊥CD于G,如图①,

则四边形AHGB为矩形,
∴HG=AB=3x,
∵四边形ABCD为等腰梯形,
∴AD=BC,DH=CG,
在Rt△ADH中,设DH=t,
∵∠ADC=60°,
∴∠DAH=30°,
∴AD=2t,AH=t,
∴BC=2t,CG=t,
∵等腰梯形ABCD的周长为48,
∴3x+2t+t+3x+t+2t=48,解得t=8-x,
∴AD=2(8-x)=18-2x,
CD=8-x+3x+8-x=16+x;
(2)S=(AB+CD)•AH
=(3x+16+x)•(8-x)
=-2x2+8x+64
∵S=-2(x-2)2+72
∴当x=2时,S有最大值72
(3)连结OA、OD,如图②,

当x=2时,AB=6,CD=16+2=18,等腰梯形的高为×(8-2)=6
则AE=3,DF=9,
∵点E和点F分别是AB和CD的中点,
∴直线EF为等腰梯形ABCD的对称轴,
∴EF垂直平分AB和CD,EF为等腰梯形ABCD的高,即EF=6
∴等腰梯形ABCD的外接圆的圆心O在EF上,
设OE=a,则OF=6-a,
在Rt△AOE中,
∵OE2+AE2=OA2
∴a2+32=R2
在Rt△ODF中,
∵OF2+DF2=OD2
∴(6-a)2+92=R2
∴a2+32=(6-a)2+92,解得a=5
∴R2=(52+32=84,
∴R=2
【考点】圆的综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线于点B、C,则BC的长值为   

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,在平面直角坐标系xOy中,点M为抛物线的顶点,过点(0,4)作x轴的平行线,交抛物线于点P、Q(点P在Q的左侧),PQ=4.
(1)求抛物线的函数关系式,并写出点P的坐标;
(2)小丽发现:将抛物线绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O,你认为正确吗?请说明理由;
(3)如图2,已知点A(1,0),以PA为边作矩形PABC(点P、A、B、C按顺时针的方向排列),
①写出C点的坐标:C(              )(坐标用含有t的代数式表示);
②若点C在题(2)中旋转后的新抛物线上,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1、2,已知四边形ABCD为正方形,在射线AC上有一动点P,作PE⊥AD(或延长线)于E,作PF⊥DC(或延长线)于F,作射线BP交EF于G.
(1)在图1中,设正方形ABCD的边长为2,四边形ABFE的面积为y,AP=x,求y关于x的函数表达式;
(2)结论:GB⊥EF对图1,图2都是成立的,请任选一图形给出证明;
(3)请根据图2证明:△FGC∽△PFB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

今年5月1日起实施《青海省保障性住房准入分配退出和运营管理实施细则》规定:公共租赁住房和廉租住房并轨运行(以下简称并轨房),计划10年内解决低收入人群住房问题.已知第x年(x为正整数)投入使用的并轨房面积为y百万平方米,且y与x的函数关系式为y=-x+5.由于物价上涨等因素的影响,每年单位面积租金也随之上调.假设每年的并轨房全部出租完,预计第x年投入使用的并轨房的单位面积租金z与时间x满足一次函数关系如下表:

时间x(单位:年,x为正整数)
 
1
 
2
 
3
 
4
 
5
 

 
单位面积租金z(单位:元/平方米)
 
50
 
52
 
54
 
56
 
58
 
 
 
 
(1)求出z与x的函数关系式;
(2)设第x年政府投入使用的并轨房收取的租金为W百万元,请问政府在第几年投入使用的并轨房收取的租金最多,最多为多少百万元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.
(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;
(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.
(1)求tan∠DBC的值;
(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

定义1:在△ABC中,若顶点A,B,C按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A,B,C按顺时针方向排列,则规定它的面积的相反数为△ABC的“有向面积”.“有向面积”用表示,例如图1中,,图2中,.
定义2:在平面内任取一个△ABC和点P(点P不在△ABC的三边所在直线上),称有序数组()为点P关于△ABC的“面积坐标”,记作,例如图3中,菱形ABCD的边长为2,,则,点G关于△ABC的“面积坐标”.在图3中,我们知道,利用“有向面积”,我们也可以把上式表示为:.
应用新知:
(1)如图4,正方形ABCD的边长为1,则        ,点D关于△ABC的“面积坐标”是       ;探究发现:
(2)在平面直角坐标系中,点
①若点P是第二象限内任意一点(不在直线AB上),设点P关于的“面积坐标”为
试探究之间有怎样的数量关系,并说明理由;
②若点是第四象限内任意一点,请直接写出点P关于的“面积坐标”(用x,y表示);
解决问题:
(3)在(2)的条件下,点,点Q在抛物线上,求当的值最小时,点Q的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线于点C;
(1)求该抛物线的解析式;
(2)求点A关于直线的对称点的坐标,判定点是否在抛物线上,并说明理由;
(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案