精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,AC为对角线,AC=BC=5,AB=6,AE是ABC的中线.

(1)用无刻度的直尺画出ABC的高CH(保留画图痕迹);

(2)求ACE的面积.

【答案】(1)作图见解析;(2)6

【解析】(1)如图,连接BD,BD与AE交于点F,连接CF并延长到AB,则它与AB的交点即为H.

理由如下:

BD、AC是ABCD的对角线,点O是AC的中点,AE、BO是等腰ABC两腰上的中线,AE=BO,AO=BE,AO=BE,∴△ABO≌△BAE(SSS),∴∠ABO=BAE,ABF中,∵∠FAB=FBA,FA=FB,∵∠BAC=ABC,∴∠EAC=OBC,AC=BC,EAC=OBC,FA=FB,可得AFCBFC(SAS)∴∠ACF=BCF,即CH是等腰ABC顶角平分线,所以CH是ABC的高;

(2)AC=BC=5,AB=6,CHAB,AH=AB=3,CH==4,S△ABC=ABCH=×6×4=12,AE是ABC的中线,S△ACE=S△ABC=6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338600000亿次,数学338600000用科学记数法可表示为(
A.3.386×109
B.0.3386×109
C.33.86×107
D.3.386×108

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为(
A.78°
B.75°
C.60°
D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一组数据:57105756,这组数据的众数和中位数分别是( )

A.107B.57C.56D.67

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=10,对角线AC=12.若过点A作AE⊥CD,垂足为E,则AE的长为(
A.9
B.
C.
D.9.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ACB和△ADE均为等边三角形,点C、E、D在同一直线上,连接BD. 求证:CE=BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题提出】

用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

【问题探究】

不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.

【探究一】

(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?

此时,显然能搭成一种等腰三角形.

所以,当n=3时,m=1.

(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?

只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.

所以,当n=4时,m=0.

(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?

若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.

若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.

所以,当n=5时,m=1.

(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?

若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.

若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.

所以,当n=6时,m=1.

综上所述,可得:表①

【探究二】

(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?

(仿照上述探究方法,写出解答过程,并将结果填在表②中)

(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?

(只需把结果填在表②中)

表②

你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…

【问题解决】:

用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)

表③

【问题应用】:

用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了 根木棒.(只填结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O为△ABC的外接圆,圆心O在AB上.

(1)在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D(保留作图痕迹,不写作法与证明);

(2)如图2,设∠BAC的平分线AD交BC于E,⊙O半径为5,AC=4,连接OD交BC于F.

①求证:OD⊥BC;

②求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水星和太阳的平均距离约为57900000km,用科学记数法表示为__________.

查看答案和解析>>

同步练习册答案