
解:(1)由题意,有△BEF≌△DEF.
∴BF=DF
如图,过点A作AG⊥BC于点G.则四边形AGFD是矩形.
∴AG=DF,GF=AD=4.
在Rt△ABG和Rt△DCF中,
∵AB=DC,AG=DF,
∴Rt△ABG≌Rt△DCF.(HL)
∴BG=CF
∴BG=

(BC-GF)=

(8-4)=2.
∴DF=BF=BG+GF=2+4=6
∴S
梯形ABCD=

(AD+BC)•DF=

×(4+8)×6=36
(2)猜想:CG=k•BE(或BE=

CG)

证明:如图,过点E作EH∥CG,交BC于点H.
则∠FEH=∠FGC.
又∠EFH=∠GFC,
∴△EFH∽△GFC.
∴

,
而FG=k•EF,即

.
∴

即CG=k•EH
∵EH∥CG,∴∠EHB=∠DCB.
而四边形ABCD是等腰梯形,∴∠B=∠DCB.
∴∠B=∠EHB.∴BE=EH.
∴CG=k•BE.
分析:(1)由折叠的性质知,BF=DF,过点A作AG⊥BC于点G.则四边形AGFD是矩形,然后根据相似三角形的特点,利用面积公式求出.
(2)如图,过点E作EH∥CG,交BC于点H.则∠FEH=∠FGC,可得△EFH∽△GFC.根据相似三角形和梯形的性质解决.
点评:本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;
2、等腰梯形的性质,全等三角形和相似三角形的判定和性质求解