精英家教网 > 初中数学 > 题目详情
2.如图,抛物线y=ax2+bx+2经过点A(-1,0),B(4,0),交y轴于点C;
(1)求抛物线的解析式(用一般式表示);
(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=$\frac{2}{3}$S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;
(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.

分析 (1)由A、B的坐标,利用待定系数法可求得抛物线解析式;
(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;
(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长.

解答 解:
(1)∵抛物线y=ax2+bx+2经过点A(-1,0),B(4,0),
∴$\left\{\begin{array}{l}{a-b+2=0}\\{16a+4b+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=\frac{3}{2}}\end{array}\right.$,
∴抛物线解析式为y=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2;
(2)由题意可知C(0,2),A(-1,0),B(4,0),
∴AB=5,OC=2,
∴S△ABC=$\frac{1}{2}$AB•OC=$\frac{1}{2}$×5×2=5,
∵S△ABC=$\frac{2}{3}$S△ABD
∴S△ABD=$\frac{3}{2}$×5=$\frac{15}{2}$,
设D(x,y),
∴$\frac{1}{2}$AB•|y|=$\frac{1}{2}$×5|y|=$\frac{15}{2}$,解得|y|=3,
当y=3时,由-$\frac{1}{2}$x2+$\frac{3}{2}$x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);
当y=-3时,由-$\frac{1}{2}$x2+$\frac{3}{2}$x+2=-3,解得x=-2(舍去)或x=5,此时D点坐标为(5,-3);
综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,-3);
(3)∵AO=1,OC=2,OB=4,AB=5,
∴AC=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,BC=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$,
∴AC2+BC2=AB2
∴△ABC为直角三角形,即BC⊥AC,
如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,

由题意可知∠FBC=45°,
∴∠CFB=45°,
∴CF=BC=2$\sqrt{5}$,
∴$\frac{AO}{OM}$=$\frac{AC}{CF}$,即$\frac{1}{OM}$=$\frac{\sqrt{5}}{2\sqrt{5}}$,解得OM=2,$\frac{OC}{FM}$=$\frac{AC}{AF}$,即$\frac{2}{FM}$=$\frac{\sqrt{5}}{3\sqrt{5}}$,解得FM=6,
∴F(2,6),且B(4,0),
设直线BE解析式为y=kx+m,则可得$\left\{\begin{array}{l}{2k+m=6}\\{4k+m=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=-3}\\{b=12}\end{array}\right.$,
∴直线BE解析式为y=-3x+12,
联立直线BE和抛物线解析式可得$\left\{\begin{array}{l}{y=-3x+12}\\{y=-\frac{1}{2}{x}^{2}+\frac{3}{2}x+2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=5}\\{y=-3}\end{array}\right.$,
∴E(5,-3),
∴BE=$\sqrt{(5-4)^{2}+(-3)^{2}}$=$\sqrt{10}$.

点评 本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D点的纵坐标是解题的关键,在(3)中由条件求得直线BE的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.不等式3x+6≥9的解集在数轴上表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.
(1)求证:△OAD∽△ABD;
(2)当△OCD是直角三角形时,求B、C两点的距离;
(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,直线y=-$\frac{2}{3}$x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=-$\frac{4}{3}$x2+bx+c经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列哪一个是假命题(  )
A.五边形外角和为360°
B.切线垂直于经过切点的半径
C.(3,-2)关于y轴的对称点为(-3,2)
D.抛物线y=x2-4x+2017对称轴为直线x=2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知关于x的方程x2+x-a=0的一个根为2,则另一个根是(  )
A.-3B.-2C.3D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解不等式组$\left\{\begin{array}{l}{x+1≤2①}\\{\frac{1+2x}{3}>x-1②}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.
(1)求证:BE与⊙O相切;
(2)设OE交⊙O于点F,若DF=1,BC=2$\sqrt{3}$,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在正方形网格有△ABC,每个方格的长度为一个单位长度,
(1)作出与△ABC关于y轴对称的图形.
(2)求出△ABC的面积.

查看答案和解析>>

同步练习册答案