精英家教网 > 初中数学 > 题目详情
某建筑公司在2014年1月和2月将设备投资减少了36%,如果平均每个月设备投资减少的百分数相同,这个百分数是多少?
考点:一元二次方程的应用
专题:增长率问题
分析:可设原来的设备投资为1,等量关系为:1×(1-每个月平均投资减少的百分数)2=1×(1-36%),把相关数值代入计算即可.
解答:解:设每个月平均投资减少的百分数为x,列方程得1×(1-x)2=1×(1-36%),
∴(1-x)2=0.64,
∴1-x=0.8.
∴x=0.2=20%.
答:平均减少的百分数是20%.
点评:考查一元二次方程的应用;得到2月份的投资的等量关系是解决本题的关键;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知
a
b
=
c
d
,证明:
a
a-b
=
c
c-d

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c与x轴交于A(-2,0),B(
1
2
,0),与y轴交于点C(0,1).
(1)求该抛物线的函数表达式;
(2)M(x,y)是抛物线上一点,若四边形ACBM的面积为
25
8
,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2经过点(2,-8).
(1)将上述抛物线向下平移3个单位,求所得抛物线的解析式.
(2)若点A为抛物线y=ax2上一点,直线AB⊥x轴,AB=5,沿y轴平移抛物线y=ax2,使之过点B,求平移后所得的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

M为等边△ABC内部一点,且M到三角形的三顶点的长分别为3,4,5,求这个等边△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠BAC=α.
(1)如图1,∠ABC与∠ACB的角平分线交于O,求∠BOC;
(2)如图2,∠MBC的角平分线与∠NCB的角平分线交于Q,求∠BQC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的高BD,CE相交于点F.
(1)若∠ABD=36°,求∠ACE的度数;
(2)若∠A=50°,求∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

化简:
x-2+x2
x2+4+4x

查看答案和解析>>

科目:初中数学 来源: 题型:

一个直角三角形的斜边长为10,两条直角边相差2,则较长的直角边长度为
 

查看答案和解析>>

同步练习册答案