ÔĶÁÏÂÃæµÄÎÄ×Ö£¬Íê³ÉÏÂÃæ¸÷Ìâ¡££¨9·Ö£©
Ëæ×ÅÐÅÏ¢¿ÆѧºÍ¼¼Êõ¹ã·ºµØÈÚÈë½ÌÓýÖ®ÖУ¬21ÊÀ¼ÍµÄÏÖ´ú½ÌÓý±Ø½«Õ¹³á¸ß·É£¬Ñ¸ÃÍ·¢Õ¹¡£
´«Í³µÄµç½Ì¼¼ÊõÈç»ÃµÆ¡¢Í¶Ó°¡¢µçÊÓ¡¢Â¼Òô¡¢Â¼ÏñµÈÓëÏȽøµÄ¶àýÌå¼¼ÊõÏà½áºÏ£¬ÍƳ³öУ¬ÔÚÐÂÊÀ¼ÍµÄÏÖ´ú½ÌѧÖÐÈÔ´óÓÐ×÷Ϊ¡£½ÌʦÀûÓûõơ¢Í¶Ó°Éè¼Æ½Ìѧ£¬¿ÉÁé»î¿ØÖƽÌѧÐÅÏ¢Êä³ö¡¢½â˵Ëٶȣ¬´Ó¶øÌá¸ß½ÌѧЧÒæ¡£ÔËÓõçÊÓ¼Ïñ¼¼Êõ£¬ÒÔ¼°Â¼ÒôºÏ³É¼ô¼­¼¼Êõ£¬Éè¼Æ¿ÎÌýÌѧ£¬Áî»­ÃæÇåÎú£¬Éú¶¯ÐÎÏó£¬É«²Ê·á¸»£¬¸ÐȾÁ¦Ç¿¡£
ÍøÂç½ÌÓý½«³ÉΪ21ÊÀ¼ÍÏÖ´ú½ÌÓý¼¼Êõ¸ïС¢·¢Õ¹µÄÖ÷Á÷¡£Ó¦ÓÃÓÚ½ÌѧµÄ¼ÆËã»úÍøÂ磬¿É·ÖΪÊÒÄÚÍø¡¢Ð£Ô°Íø¡¢µØÇøÍøºÍ»¥ÁªÍø¡£ÊÒÄÚÍøÊǵçÄÔ½ÌÊÒ¡¢ÓïÒô½ÌÊÒ¡¢µçÊÓ½ÌÊÒµÄÍêÉÆͳһ¡£½Ìʦ¿ÉÑ¡ÔñCD¼¤¹âÊÓÅÌ¡¢VCDÊÓƵ¹âÅÌ»òÆäËû¿Î¼þ£¨CAI£©ÄÚÈݶ¯Ì¬Á¬ÐøµØ²¥¸øµ¥¸ö¡¢²¿·Ö»òÈ«ÌåѧÉú¹Û¿´£¬¿ÉËæʱ¼ì²éºÍ¼à¿ØѧÉúѧϰ£¬Í¬²½²é¿´Ñ§Éú»úµÄ»­ÃæµÈ¡£ÊÒÄÚÍøµÄ½ÌѧÈí¼þ¾ßÓÐ×Ô¶¯³öÌâ¡¢×Ô¶¯ÆÀ¾íµÈ¹¦ÄÜ£¬´ó´ó¼õÇáÁ˽ÌʦµÄ¸ºµ£¡£Ð£Ô°Íø°üÀ¨£ºÐÐÕþ¹ÜÀíϵͳ¡¢Í¼Êé¹ÜÀíϵͳ¡¢½Ìѧ·þÎñϵͳ¡¢½Ìѧ¿ÆÑÐϵͳµÈ¡£µØÇøÍøºÍ»¥ÁªÍøËù¹¹½¨µÄÔ¶³Ì½ÌѧÌåϵ£¬Ê¹µÃ·ÇÖصãѧУµÄѧÉúÒ²¿ÉÏíÊÜÓëÖصãѧУͬµÈˮƽµÄ½ÌÓý£¬´Ó¶øÌá¸ßÁËÈ˲ÅÅàÑøÖÊÁ¿²¢½«ÓÐЧµØ¶ôÖÆ¡°ÔñУ¡±·ç¡£ÍøÂç½Ìѧ£¬ÆäÏÊÃ÷µÄ½ÌÓýÐÔ¡¢½ÌѧÐÔ¡¢ÒÕÊõÐÔ¡¢±ê×¼ÐÔ£¬½«Ê¹½ÌѧÐÅÏ¢ÎÞÏÞÑÓÉìºÍÍØ¿í£¬·´À¡ÐÅÏ¢¼Ó¿ì£¬½ÌѧЧÒæ¡¢½ÌѧÖÊÁ¿Ã÷ÏÔÌá¸ß¡£
ÔÚÐÂÊÀ¼ÍÖУ¬ÐéÄâѧУ½«ÈçÓêºó´ºËñ°ãÅ·¢Õ¹£¬ÔÚÐéÄâѧУÀ¿Î³ÌÄÚÈݽ«´ÓÐéÄâͼÊé¹ÝÏÂÔØ£»Ñ§ÉúºÍ½ÌʦÔÚÐéÄâ½ÌÊÒÏà»á£¬½øÐС°ÏÖ³¡¡±¸¨µ¼£»Ñ§Éú°´ÕÕÒªÇóÍê³ÉÏàÓ¦µÄ×÷ÒµÓëÁ·Ï°£¬²¢Í¨¹ýµç×ÓÓʼþ´«µÝ¸ø¸¨µ¼½ÌʦÅú¸Ä£»½Ìʦ¸øÓèÏàÓ¦µÄ¸¨µ¼£»×îºóͨ¹ýÍøÉÏÁª»ú¿¼ÊÔ£¬»ñµÃ½áÒµ¡£ÐéÄâÏÖʵ¼¼ÊõÔÚ½ÌѧºÍÅàѵÁìÓòµÄÓ¦ÓÃÇ°¾°½«Ê®·Ö¹ãÀ«¡£ÀýÈçÖÇÄÜʵÑéÊÒ¡¢ÖÇÄܲÙ×÷ƽ̨£¨¹¤×÷̨£©µÈ¡£
×ÜÖ®£¬ÐÅϢʱ´úµÄոм¼ÊõÓ봫ͳ½ÌÓý¼¼ÊõÓлú½áºÏµÄÏÖ´ú½ÌÓý¼¼Êõ½«Ö§³ÅÆðÐÂÊÀ¼ÍµÄ½ÌÓýÌìµØ¡£
¡¾Ð¡Ìâ1¡¿¸ù¾ÝÉÏÎÄÄÚÈÝ£¬¶Ô´«Í³½ÌÓý¼¼ÊõÀí½â²»ÕýÈ·µÄÒ»ÏîÊÇ £¨¡¡¡¡£©£¨3·Ö£©
A£®´«Í³µç½Ì¼¼ÊõÓë¶àýÌåÏà½áºÏ£¬ÍƳ³öУ¬ÔÚÏÖ´ú½ÌѧÖÐÈÔ½«·¢»ÓºÜ´ó×÷Óá£
B£®½ÌʦÀûÓõçÊÓ¡¢Â¼Ïñ¡¢Â¼ÒôºÏ³É¼ô¼­¼¼Êõ£¬½øÐпÎÌýÌѧ£¬½«»áÈ¡µÃÏÔÖøµÄ½ÌѧЧ¹û¡£
C£®21ÊÀ¼ÍÏÖ´ú½ÌÓý¼¼Êõ°üÀ¨¼ÆËã»ú¼¼Êõ¡¢ÍøÂç¼¼ÊõÒÔ¼°ÓÉÆä¹¹½¨µÄÐéÄâѧУµÄ½ÌÓý½ÌѧÉèÊ©£¬¶ø´«Í³µÄµç½Ì¼¼ÊõÔò²»ÔÚÆäÖС£
D£®ÏÖ´ú½ÌÓý¼¼Êõ¾¡¹ÜÊǽÌÓýÏÖ´ú»¯µÄÖØÒª±êÖ¾£¬µ«²¢²»Åų⴫ͳµÄµç½Ì¼¼ÊõÈç»ÃµÆ¡¢Í¶Ó°µÈ¡£
¡¾Ð¡Ìâ2¡¿¶ÔÍøÂç½ÌÓýµÄ½â˵£¬·ûºÏÎÄÒâµÄÒ»ÏîÊÇ £¨¡¡¡¡£©£¨3·Ö£©
A£®Ó¦ÓÃÓÚ½ÌѧµÄ¼ÆËã»úÍøÂçÊÇÍøÂç½ÌÓýµÄÖØÒª×é³É²¿·Ö£¬ËüÊÇÓÉÊÒÄÚÍø¡¢Ð£Ô°Íø¡¢µØÇøÍøºÍ»¥ÁªÍø×é³ÉµÄ¡£
B£®ÍøÂç½ÌÓýµÄ·¶Î§ºÜ¹ã£¬Ö÷Òª°üÀ¨ÐÐÕþ¹ÜÀíϵͳ¡¢½Ìѧ·þÎñϵͳ¡¢Í¼Êé¹ÜÀíϵͳ¡¢½Ìѧ¿ÆÑÐϵͳ¡£Æä×÷ÓÃÊÇʹ·ÇÖصãѧУµÄѧÉúÒ²¿ÉÏíÊÜÓëÖصãѧУͬµÈˮƽµÄ½ÌÓý£¬Ìá¸ßÅàÑøÖÊÁ¿£¬²¢½«ÓÐЧµØ¶ôÖÆ¡°ÔñУ¡±·ç¡£
C£®ÍøÂç½ÌÓýµÄÖ÷Òª¹¦ÄÜÓжþ£ºÒ»ÊÇ°ÑÄÚÈݶ¯Ì¬Á¬ÐøµØ²¥¸øѧÉú¹Û¿´£¬¿ÉËæʱ¼ì²éºÍ¼à¿ØѧÉúѧϰ£¬Í¬²½¼ì²éѧÉú»úµÄ»­Ã棻¶þÊÇËüµÄ½ÌѧÈí¼þ¾ßÓÐ×Ô¶¯³öÌâ¡¢×Ô¶¯ÆÀ¾íµÈÄÜÁ¦£¬´Ó¶ø¼õÇáÁ˽ÌʦµÄ¸ºµ£¡£
D£®Ô¶³Ì½ÌѧÌåϵÏÊÃ÷µÄ½ÌÓýÐÔ¡¢½ÌѧÐÔ¡¢ÒÕÊõÐÔ¡¢±ê×¼ÐÔ£¬½«Ê¹½ÌѧÐÅÏ¢ÎÞÏÞÑÓÉìºÍÍØ¿í£¬ÐÅÏ¢·´À¡¼Ó¿ì£¬½ÌѧЧÒæÃ÷ÏÔÌá¸ß¡£
¡¾Ð¡Ìâ3¡¿ÏÂÁÐ˵·¨²»·ûºÏÎÄÒâµÄÒ»ÏîÊÇ £¨¡¡¡¡£©£¨3·Ö£©
A£®21ÊÀ¼ÍÏÖ´ú½ÌÓý¼¼Êõ¸ïз¢Õ¹µÄÖ÷Á÷±Ø¶¨½«¼ÆËã»úÍøÂçÓ¦ÓÃÓÚ½ÌѧµÄÍøÂç½ÌÓý¡£
B£®CD¼¤¹âÊÓÅÌ¡¢VCDÊÓƵ¹âÅÌ»òÆäËû¿Î¼þ£¨CAI£©µÈÊǹ¹³ÉÊÒÄÚÍøµÄÖØÒª×é³É²¿·Ö¡£
C£®Ð£Ô°Íø¡¢µØÇøÍø¡¢»¥ÁªÍøÈýÕßËù¹¹½¨µÄÔ¶³Ì½ÌÓýÌåϵ£¬²»±Øͨ¹ýÊý¾ÝÒôƵÓëÔ¶³Ì½ÌÓýÍøÂçµÄ´«ËÍ£¬¾ÍÄÜʵÏÖÒìµØ½»»¥Ê½½Ìѧ¡£
D£®ÐÂÊÀ¼ÍµÄ½ÌÓýÌìµØ£¬±Ø½«ÓÉÐÅϢʱ´úµÄոм¼ÊõÓ봫ͳµÄµç½Ì¼¼ÊõÓлú½áºÏµÄÏÖ´ú½ÌÓý¼¼ÊõÖ§³ÅÆðÀ´¡£

¡¾Ð¡Ìâ1¡¿C
¡¾Ð¡Ìâ2¡¿A
¡¾Ð¡Ìâ3¡¿C½âÎö:

¡¾Ð¡Ìâ1¡¿ÎÄÖпªÍ·ºÍ½áβ¶¼ËµÃ÷´«Í³µÄµç½Ì¼¼Êõ¶¼¡°ÔÚÆäÖС±£¬ËùÒÔCÏî²»ÕýÈ·¡£
¡¾Ð¡Ìâ2¡¿BÏîÖÐÇ°¾ä¡°°üÀ¨¡±µÄËĸö²¿·ÖÊÇÊÒÄÚÍøµÄ£»ºó¾äÁ½Ìõ¡°×÷Óá±ÊÇÊôÓÚÔ¶³Ì½ÌѧÌåϵµÄ£»CÏîÖеġ°Á½Ìõ¹¦ÄÜ¡±Ò²ÊÇÊÒÄÚÍøµÄ£¬²»ÄÜ¿´×÷ÊÇÊôÓÚÕû¸öÍøÂç½ÌÓýµÄ¹¦ÄÜ£»DÏîµÄ¡°ËÄÐÔ¡±¼°×÷ÓÃÊÇÊôÓÚÕû¸öÍøÂç½ÌѧµÄ¡£
¡¾Ð¡Ìâ3¡¿CÏîÖС°Ð£Ô°Íø¡±²»ÊôÓÚÔ¶³Ì½ÌѧÌåϵ£»¡°²»±Øͨ¹ýÊý¾ÝÒôƵÓëÔ¶³Ì½ÌÓýÍøÂçµÄ´«ËÍ¡±£¬ÊǶàÓàÐÅÏ¢£¬Ô­ÎÄÖÐûÓУ»¡°ÒìµØ½»»¥Ê½½Ìѧ¡±²»¶Ô£¬ÒòΪԭÎÄÖÐÊÇ¡°·ÇÖصãѧУµÄѧÉúÒ²¿ÉÏíÊÜÓëÖصãѧУͬµÈˮƽµÄ½ÌÓý¡±¡£
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÃæµÄÎÄ×Ö£¬Íê³É½â´ð¹ý³Ì£®
£¨1£©
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬Ôò
1
2007¡Á2008
=
 
£¬²¢ÇÒÓú¬ÓÐnµÄʽ×Ó±íʾ·¢ÏֵĹæÂÉ£®
£¨2£©¸ù¾ÝÉÏÊö·½·¨¼ÆË㣺
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­+
1
2005¡Á2007
£®
£¨3£©¸ù¾Ý£¨1£©£¬£¨2£©µÄ¼ÆË㣬ÎÒÃÇ¿ÉÒԲ²âÏÂÁнáÂÛ£º
1
n(n+k)
=
 
£¨ÆäÖÐn£¬k¾ùΪÕýÕûÊý£©£¬²¢¼ÆËã
1
1¡Á4
+
1
4¡Á7
+
1
7¡Á10
+¡­+
1
2005¡Á2008
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔĶÁÏÂÃæµÄÎÄ×Ö£¬Íê³ÉºóÃæÎÊÌ⣮
ÎÒÃÇÖªµÀ
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬ÄÇô
1
4¡Á5
=
1
4
-
1
5
1
4
-
1
5
£¬
²¢ÒÀ´Ë¼ÆË㣺
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
2011¡Á2012
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔĶÁÏÂÃæµÄÎÄ×Ö£¬Íê³ÉºóÃæµÄÎÊÌ⣮
ÎÒÃÇÖªµÀ£¬
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬ÄÇô
1
4¡Á5
=
 
£¬
1
2005¡Á2006
=
 
£®
£¨1£©Óú¬ÓÐnµÄʽ×Ó±íʾÄã·¢ÏֵĹæÂÉ
 
£»
£¨2£©ÒÀÉÏÊö·½·¨½«¼ÆË㣺
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­+
1
2003¡Á2005
=
 

£¨3£©Èç¹ûn£¬k¾ùΪÕýÕûÊý£¬ÄÇô
1
n(n+k)
=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔĶÁÏÂÃæµÄÎÄ×Ö£¬Íê³ÉºóÃæÎÊÌ⣮ÎÒÃÇÖªµÀ
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬ÄÇô
1
4¡Á5
=
1
4
-
1
5
1
4
-
1
5
£¬
1
2003¡Á2004
=
1
2003
-
1
2004
1
2003
-
1
2004
£®Óú¬ÓÐnµÄʽ×Ó±íʾÄã·¢ÏֵĹæÂÉ£º
1
n(n+1)
=
1
n
-
1
n+1
1
n(n+1)
=
1
n
-
1
n+1
£®²¢ÒÀ´Ë¼ÆËã
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­+
1
2003¡Á2005
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸