18£®ÈôÅ×ÎïÏßy1=a1x2+b1x+c1Óëy2=a2x2+b2x+c2Âú×ã$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$=$\frac{{c}_{1}}{{c}_{2}}$=k£¨k¡Ù0£¬1£©£¬Ôò³Æy1ºÍy2»¥Îª¡°¹²ÖáÅ×ÎïÏß¡±
£¨1£©Ð´³öÒ»¶Ô¡°¹²ÖáÅ×ÎïÏß¡±µÄ½âÎöʽ£»
£¨2£©Å×ÎïÏßy1=a1x2+b1x+c1µÄ¶Ô³ÆÖáÊÇx=1£¬ÇÒ¾­¹ýµã£¨3£¬5£©£¬£¨0£¬8£©£¬Èôy1Óëy2»¥Îª¡°¹²ÖáÅ×ÎïÏß¡±£¬y1+y2µÄ¶¥µãµÄ×Ý×ø±êΪ-9£¬Çóy1¡¢y2µÄ½âÎöʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Ö±½Óд³öµ±-3¡Üx¡Ü-1ʱy1+y2µÄ×îСֵ£®

·ÖÎö £¨1£©ÈÏÕæÉóÌ⣬Ê×Ïȸù¾Ý¶¨ÒåÈÎÒâд³öÒ»¶Ô¡°¹²ÖáÅ×ÎïÏß¡±¼´¿É£»
£¨2£©Ïȸù¾ÝÌâÒâÇó³öa1¡¢b1¡¢c1µÄÖµ£¬ÔÙÓú¬ÓÐkµÄ´úÊýʽ°Ñº¯Êýy2±íʾ³öÀ´£¬½ø¶øµÃ½â£»
£¨3£©½«º¯Êý½øÐÐÅä·½£¬Ð´³É¶¥µãʽ£¬¼´¿ÉµÃ½â£®

½â´ð ½â£º£¨1£©y=x2+x+1£¬y=2x2+2x+2£»
£¨2£©¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{-\frac{{b}_{1}}{{2a}_{1}}=1}\\{5{=9a}_{1}{+3b}_{1}{+c}_{1}}\\{8{=c}_{1}}\end{array}\right.$
½âµÃ£º$\left\{\begin{array}{l}{{a}_{1}=-1}\\{{b}_{1}=2}\\{{c}_{1}=8}\end{array}\right.$£¬
¡à${y}_{1}={-x}^{2}+2x+8$£¬
Éè${y}_{2}=\frac{{-x}^{2}}{k}+\frac{2x}{k}+\frac{8}{k}$£¬
Ôò£º${y}_{1}+{y}_{2}=£¨-1-\frac{1}{k}£©{x}^{2}+£¨2+\frac{2}{k}£©x+£¨8+\frac{8}{k}£©$
=$£¨-1-\frac{1}{k}£©£¨x-1£©^{2}+9+\frac{9}{k}$£¬
¡à9+$\frac{9}{k}$=-9£¬
½âµÃ£ºk=$-\frac{1}{2}$£¬
¡à${y}_{2}=2{x}^{2}-4x-16$£»
£¨3£©${y}_{1}+{y}_{2}={x}^{2}-2x-8$
=£¨x-1£©2-9£¬
Å×ÎïÏß¿ª¿ÚÏòÉÏ£¬¶Ô³ÆÖáΪֱÏßx=1£¬
µ±x£¼1ʱ£¬yËæxµÄÔö´ó¶ø¼õС£¬
¡àÔÚ-3¡Üx¡Ü-1·¶Î§ÄÚ£¬µ±x=-1ʱ£¬y1+y2µÄ×îСֵΪ-5£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýµÄ¶¨ÒåÓëÐÔÖÊ£¬ÒÔ¼°Ñ§ÉúµÄ×ÔѧÄÜÁ¦£¬Àí½â¹²ÖáÅ×ÎïÏßÊǽâÌâµÄ¹Ø¼ü£¬×¢Òâ×ܽᣮ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÈôÔ²×¶µÄĸÏß³¤Êǵ×Ãæ°ë¾¶µÄ3±¶£¬Ôò½«Ô²×¶µÄ²àÃæÕ¹¿ªºóµÄÉÈÐεÄÔ²ÐĽÇÊÇ£¨¡¡¡¡£©
A£®60¡ãB£®90¡ãC£®120¡ãD£®150¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁÐÃüÌâµÄÄæÃüÌâÊǼÙÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®Èç¹ûÁ½¸öÊýµÄ¾ø¶ÔÖµÏàµÈ£¬ÄÇôÕâÁ½¸öÊýÏàµÈ
B£®Á½Ö±Ï߯½ÐУ¬ÄÚ´í½ÇÏàµÈ
C£®¾ØÐεÄËĸö½Ç¶¼ÏàµÈ
D£®¶Ô¶¥½ÇÏàµÈ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Æ½ÐÐËıßÐεÄÒ»±ß³¤Îª10cm£¬ÄÇôÕâ¸öƽÐÐËıßÐεÄÁ½Ìõ¶Ô½ÇÏß³¤¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®4cmºÍ6cmB£®6cmºÍ8cmC£®20cmºÍ30cmD£®8cmºÍ12cm

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÔÚÖ±½Ç×ø±êϵÖУ¬A£¨0£¬4£©£¬C£¨3£¬0£©£®
£¨1£©ÒÔACΪ±ß£¬ÔÚÆäÉÏ·½×÷Ò»¸öËıßÐΣ¬Ê¹ËüµÄÃæ»ýΪOA2+OC2£»
£¨2£©»­³öÏß¶ÎAC¹ØÓÚyÖá¶Ô³ÆÏß¶ÎAB£¬²¢¼ÆËãµãBµ½ACµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬AB=CB£¬BO¡ÍAC£¬°Ñ¡÷ABCÕÛµþ£¬Ê¹ABÂäÔÚACÉÏ£¬µãBÓëACÉϵĵãEÖØºÏ£¬Õ¹¿ªºó£¬ÕÛºÛAD½»BOÓÚµãF£¬Á¬½áDE¡¢EF£®ÏÂÁнáÂÛ£º¢Ùtan¡ÏADB=2£»¢ÚͼÖÐÓÐ4¶ÔÈ«µÈÈý½ÇÐΣ»¢ÛBD=BF£»¢ÜSËıßÐÎDFOE=S¡÷AOF£»¢ÝÈô½«¡÷DEFÑØEFÕÛµþ£¬ÔòµãDÒ»¶¨ÂäÔÚACÉÏ£¬ÉÏÊö½áÂÛÖÐÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{{x}^{2}-1}{{x}^{2}-x}$¡Â£¨2+$\frac{{x}^{2}+1}{x}$£©£¬ÆäÖÐx=tan60¡ã-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®¾Ý±¨µÀ£¬2014Äê6Ô£¬ºã´ó¼¯ÍÅÓë°¢Àï°Í°Í¼¯ÍÅʵʩսÂÔºÏ×÷£¬°¢Àï°Í°Í×¢×Ê12ÒÚÔªÈë¹É¹ãÖݺã´ó£®½«Êý¾Ý1200000000ÓÿÆÑ§¼ÇÊý·¨±íʾΪ£¨¡¡¡¡£©
A£®1.2¡Á108B£®12¡Á108C£®1.2¡Á10-9D£®1.2¡Á109

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÏÂÁÐ˵·¨£º¢Ù²»ÏཻµÄÁ½ÌõÖ±Ï߯½ÐУ»¢ÚÒ»¸ö½ÇµÄ²¹½ÇÒ»¶¨´óÓÚÕâ¸ö½Ç£»¢Û´ÓÖ±ÏßÍâÒ»µã×÷ÕâÌõÖ±ÏߵĴ¹Ï߶νÐ×öµãµ½ÕâÌõÖ±ÏߵľàÀ룻¢ÜͬÅÔÄÚ½ÇÏàµÈ£¬Á½Ö±Ï߯½ÐУ®ÆäÖдíÎóµÄ¸öÊýÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸