精英家教网 > 初中数学 > 题目详情
20.把线段AB延长到D,使BD=$\frac{3}{2}$AB,再延长BA到C,使CA=AB.
(1)若AB=4cm,CD是多少?
(2)若AB=m,CD是多少?

分析 先根据BD=$\frac{3}{2}$AB,CA=AB,求得CA和BD的长,最后根据CD=CA+AB+BD进行计算即可.

解答 解:(1)∵BD=$\frac{3}{2}$AB,CA=AB,AB=4cm,
∴CA=4cm,BD=6cm,
∴CD=4+4+6=14cm;

(2)∵BD=$\frac{3}{2}$AB,CA=AB,AB=m,
∴CA=m,BD=$\frac{3}{2}$m,
∴CD=m+m+$\frac{3}{2}$m=$\frac{7}{2}$m.

点评 本题考查了两点间的距离,根据题意画出示意图会使问题变得简单,解题时注意线段之间的和差关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.三角板ABC中,∠ACB=90°,∠B=30°,AC=2$\sqrt{3}$,三角板绕直角顶点C逆时针旋转,当点A的对应点A′落在AB边的起始位置上时即停止转动,则B点转过的路径长为(  )
A.B.$\frac{4}{3}$$\sqrt{3}$πC.$\frac{5}{2}$πD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图1,点A,B是双曲线y=$\frac{k}{x}$(k>0)第一象限的一支上任意两点,它们的横坐标分别为a,b,直线AB交y轴于点P,交x轴于点Q.过点A作y轴的垂线,垂足为C,过点B作x轴的垂线,垂足为点D.直线AC.BD相交于点E.
(1)求证:△EAB∽△ECD;
(2)求证:PA=BQ;
(3)如图2,点A,B分别是双曲线y=$\frac{k}{x}$(k<0)两支上任意一点,直线AB交y轴于点P,交x轴于点Q,直接写出图中相等的线段(不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知直线y=2x-4与两坐标分别交于点A,B,若点P是直线AB上的一个动点,则点P到原点O的最短距离是$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.一次函数y=ax-a与y=x+a在同一坐标系里的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.对于平面直角坐标系xOy中的点P(m,n),定义一种变换:作点P(m,n)关于y轴对称的点P′,再将P′向左平移k(k>0)个单位得到点Pk′,Pk′叫做对点P(m,n)的k阶“?”变换.若一个函数图象上所有点都进行了k阶“?”变换后组成的图形称为此函数进行了k阶“?”变换后的图形.
(1)求P(3,2)的3阶“?”变换后P3′的坐标;
(2)若直线y=x+1经过k阶“?”变换后的图象与反比例函数的图象y=$\frac{2}{x}$没有公共点,求k的取值范围.
(3)若抛物线C1:y=x2-4x+3与直线l:y=-x+3交于A,B两点,抛物线C1经过k阶“?”变换后的图象记为C2,C2与直线l交于C,D两点,若$\frac{CD}{AB}$=$\frac{7}{3}$,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友能分到不足5个苹果.这一箱苹果的个数是42,小朋友的人数是6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.现有树苗若干棵,计划栽在公路的一侧,要求路的两侧各载一棵,并且每2棵树的间隔距离相等,如果每隔5米栽1棵,则树苗缺21棵.如果每隔5.5米栽一棵,则树苗正好用完.你能算出原来有树苗的棵数和这段路的长度吗?
解:①若相邻两树的间隔长称为一段,那么段数与应植树棵树的关系是段数=植树棵数-1
        ②相邻两树的间隔长、应植树棵树与路长的关系是路长=(植树棵数-1)×间隔长
        ③设原有树苗x棵,请你填写下表:
方案间隔长(米)应植树数(棵)路长(米)
方案15(  )(  )
方案25.5(  x  )(  )
④由于是同一段路上,路长相等,则可列方程5.5(x-1)=5(x+21-1)
    解这个方程得x=211
    当x=211时,这段路长度为1155米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.若干本书分给某班的学生,如果每人6本,则多18本,每人7本,则少26本,求学生有多少人?

查看答案和解析>>

同步练习册答案