分析 (1)根据反比例函数y=$\frac{m}{x}$的图象过点A(-3,1)利用待定系数法求出即可,所求得出B点坐标,进而利用待定系数法求出一次函数解析式即可;
(2)将三角形AOB分割为S△AOB=S△BOC+S△AOC,求出即可;
(3)根据A,B的坐标,即可得到结论.
解答
解:(1)因为经过A(-3,1),所以m=-3.
所以反比例函数的解析式为y=-$\frac{3}{x}$
因为B(2,n)在y=-$\frac{3}{x}$上,所以n=-$\frac{3}{2}$,
所以B的坐标是(2,-$\frac{3}{2}$).
把A(-3,1)、B(2,-$\frac{3}{2}$)代入y=kx+b.得:$\left\{\begin{array}{l}{-3k+b=1}\\{2k+b=-\frac{3}{2}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=-\frac{1}{2}}\end{array}\right.$,
所以y=-$\frac{1}{2}$x-$\frac{1}{2}$.
(2)设直线y=-$\frac{1}{2}$x-$\frac{1}{2}$.与y轴分别交于C(-$\frac{1}{2}$,0)所以:S△AOB=S△BOC+S△AOC=$\frac{15}{8}$;
(3)由图象得一次函数的值小于反比例函数 的值的x的取值范围是-3<x<0或x>2.
点评 此题主要考查了待定系数法求出反比例函数、一次函数解析式以及求三角形面积等知识,根据已知得出B点坐标以及得出S△AOB=S△BOC+S△AOC是解题关键.
科目:初中数学 来源: 题型:选择题
| A. | 6 | B. | 8 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com