【题目】如图,已知AB∥CD,EF∥MN,∠1=115°,
(1)求∠2和∠4的度数;
(2)本题隐含着一个规律,请你根据(1)的结果进行归纳:如果一个角的两边分别平行于另一个角的两边,那么这两个角___________;
(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的两倍,求这两个角的大小.
【答案】(1)∠ 2=115° ∠4=65°(2)相等或互补(3 ) 120°或60°
【解析】(1)由平行线的性质可求得∠2,再求得∠4;(2)由(1)的结果可得到这两个角相等或互补;(3)根据(2)的规律可知这两个角互补,利用方程可求得这两个角.
解:(1)∵AB∥CD,
∴∠2=∠1=115°,
∵EF∥MN,∴∠4+∠2=180°,
∴∠4=180°-∠2=65°;
(2)由(1)可知如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,
故答案为:相等或互补;
(3)由(2)可知这两个角互补,设一个角为x°,则另一个角为2x°,
根据题意可得x+2x=180,
解得x=60,
∴这两个角分别为60°和120°.
“点睛”本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,④a∥b,b∥c,a∥c.
科目:初中数学 来源: 题型:
【题目】2016年春节期间,在网络上搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).
(1)求以C为顶点,且经过点D的抛物线解析式;
(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;
(3)求(2)中N1N2的最小值;
(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com