【题目】一辆轿车从甲地驶往乙地,到达乙地后立即返回甲地,速度是原来的1.5倍,往返共用t小时.一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶,设轿车行驶的时间为x(h),两车离开甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.
(1)轿车从乙地返回甲地的速度为 km/t,t= h;
(2)求轿车从乙地返回甲地时y与x之间的函数关系式;
(3)当轿车从甲地返回乙地的途中与货车相遇时,求相遇处到甲地的距离.
【答案】(1) 120; ;(2) y=-120x+300; (3) 100km.
【解析】(1)根据图象可得当x=小时时,距甲地的距离是120千米,即可求得轿车从甲地到乙地的速度,进而求得轿车从乙地返回甲地的速度和t的值;
(2)利用待定系数法即可求解;
(3)利用待定系数法求得轿车从乙地到甲地的函数解析式和货车路程和时间的函数解析式,求交点坐标即可.
(1)120;.
(2)设轿车从乙地返回甲地的函数关系式为:y=kx+b.
将(,120)和(,0),两点坐标代入,得 ,
解得: ,
所以轿车从乙地返回甲地时y与x之间的函数关系式为:y=-120x+300;
(3)设货车从甲地驶往乙地的函数关系式为:y=ax 将点(2,120)代入解得,解得a=60,故货车从甲地驶往乙地时y与x之间的函数关系式为:y=60x.
由图象可知当轿车从乙地返回甲地时,两车相遇,路程相等,即-120x+300=60x 解得x=,当x=时,y=100. 故相遇处到甲地的距离为100km
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(﹣1,0),(5,0),(0,2).若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P在移动的过程中,使△PBF成为直角三角形,则点F的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其他主要参考数据如下:
运输工具 | 途中平均速度 (千米/时) | 运费 (元/千米) | 装卸费用 (元) |
火车 | 100 | 15 | 2000 |
汽车 | 80 | 20 | 900 |
(1)如果选择汽车的总费用比选择火车的总费用多1100元,那么你知道本市与A市之间的路程是多少千米吗?请你列方程解答;
(2)若A市与某市之间的路程为s千米,且知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,要想将这批水果运往该市进行销售,则当s为多少时,选择火车和汽车运输所需费用相同?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)点B表示的数是_____;
(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.当点P运动_____秒时,点P与点Q间的距离为8个单位长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有三个内角相等凸四边形叫三等角四边形.
(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;
(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.
(3)三等角四边形ABCD中,∠A=∠B=∠C<90°,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?(作图解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个仓库共存有粮食60.解决下列问题,3个小题都要写出必要的解题过程:
(1)甲仓库运进粮食14,乙仓库运出粮食10后,两个仓库的粮食数量相等.甲、乙两个仓库原来各有多少粮食?
(2)如果甲仓库原有的粮食比乙仓库的2倍少3,则甲仓库运出多少粮食给乙仓库,可使甲、乙两仓库粮食数量相等?
(3)甲乙两仓库同时运进粮食,甲仓库运进的数量比本仓库原存粮食数量的一半多1,乙仓库运进的数量是本仓库原有粮食数量加上8所得的和的一半.求此时甲、乙两仓库共有粮食多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,CE⊥AB交AB延长线于点E,点F为点B关于CE的对称点,连接CF,分别延长DC,CF至点G,H,使FH=CG,连接AG,DH交于点P.
(1)依题意补全图1;
(2)猜想AG和DH的数量关系并证明;
(3)若∠DAB=70°,是否存在点G,使得△ADP为等边三角形?若存在,求出CG的长;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com