【题目】如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴,y轴上,连OB,将纸片OABC沿OB折叠,使点A落在A′的位置,若OB=,tan∠BOC=,则点A′的坐标( )
A. (,) B. (﹣,) C. (﹣,) D. (﹣,)
【答案】C
【解析】分析:即求A点关于OB的对称点的坐标.通过解方程组求解.
详解:∵tan∠BOC=,∴OC=2BC.
∵OC2+BC2=OB2=5,∴BC=1,OC=2.
所以A(1,0),B(1,2).
直线OB方程:y﹣2=2(x﹣1),A′和A关于OB对称,假设A′(x0,y0),AA'中点为M(x,y),则x=,y=.
∵M(x,y)在直线OB: y﹣2=2(x﹣1)上,∴﹣2=2(﹣1),即y0=2(x0+1).
∵x02+y02=OA'2=OA2=1,∴x02+4(x0+1)2=1,∴5x02+8x0+3=0.
解得:x0=﹣1或者x0=﹣,
当x0=﹣1时,y0=0,不合题意,舍去;
当x0=﹣时,y0=.
所以A(﹣).
故选C.
科目:初中数学 来源: 题型:
【题目】如图,将△ABC绕点A按逆时针方向旋转至△AB′C′(B与B′,C与C′分别是对应顶点),使AB′⊥BC,B′C′分别交AC,BC于点D,E,已知AB=AC=5,BC=6,则DE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx-1与x轴、y轴分别交于B、C两点,OB:OC=.
(1)求B点的坐标和k的值.
(2)若点A(x,y)是第一象限内的直线y=kx-1上的一个动点,当点A运动过程中,试写出△AOB的面积S与x的函数关系式;
(3)在(2)的条件下,当点A运动到什么位置时,△AOB的面积是.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,要测量河流的长,因为无法测河流附近的点,可以在线外任取一点,在的延长线上任取一点,连结和,并且延长到点,使;延长到点,使连结,并延长到点,使点,,在同一直线上.证明:测量出线段的长就是河流的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )
A.(2,0)B.(-1,-1)C.( -2,1)D.(-1, 1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据下列要求,解答相关问题.
(1)请补全以下求不等式﹣2x2﹣4x≥0的解集的过程
①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).
②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为______;并用锯齿线标示出函数y=﹣2x2﹣4x图象中y>0的部分.
③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x>0的解集为_______.
(2)利用(1)中求不等式解集的步骤,求不等式x2﹣2x+1≥4的解集.
①构造界点,画出图象;
②求得界点,标志所需;
③借助图象,写出解集
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在进行二次根式化简时,我们有时会碰上如,,一样的式子,这样的式子我们可以将其进一步化简=,,以上这种化简的方法叫做分母有理化,请利用分母有理化解答下列问题:
(1)化简:;
(2)若a是的小数部分,求的值;
(3)矩形的面积为3+1,一边长为﹣2,求它的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com