精英家教网 > 初中数学 > 题目详情
20.计算:
(1)6$\sqrt{15}$÷3$\sqrt{\frac{1}{5}}$×$\sqrt{2\frac{2}{3}}$;
(2)$\frac{\sqrt{12}×\sqrt{6}}{\sqrt{8}}$;
(3)8$\sqrt{{a}^{2}b}$÷2$\sqrt{ab}$×$\sqrt{\frac{a}{b}}$(a>0).

分析 根据二次根式的乘除法法则计算即可.

解答 解:(1)6$\sqrt{15}$÷3$\sqrt{\frac{1}{5}}$×$\sqrt{2\frac{2}{3}}$
=6$\sqrt{15}$×$\frac{\sqrt{5}}{3}$×$\frac{2\sqrt{6}}{3}$
=20$\sqrt{2}$;
(2)$\frac{\sqrt{12}×\sqrt{6}}{\sqrt{8}}$
=$\sqrt{\frac{12×6}{8}}$
=3;
(3)8$\sqrt{{a}^{2}b}$÷2$\sqrt{ab}$×$\sqrt{\frac{a}{b}}$
=4$\sqrt{a}$×$\sqrt{\frac{a}{b}}$
=$\frac{4a\sqrt{b}}{b}$.

点评 本题考查的是二次根式的乘除法,掌握二次根式的乘除法法则是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.关于x的一元二次方程x2+2(m-1)x+m2=0的根的情况是(  )
A.无法确定B.有两个不等实根C.有两相等实根D.有实根

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某次知识竞赛中,答对问题可以得分,答错或者不答题均要扣分.小明答对3题,答错或不答共5题,共得5分,小亮答对5题,答错或不答共7题,共得分11分.
(1)求本次知识竞赛中,答对或不答的得分情况.
(2)若本次竞赛共有20道题,小红的答对的试题是x道,得分是w分.
①写山w与x之间的函数关系式.
②若小红的得分不低于30分,求小红答对的题至少是多少道?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.观察下列各图,图中的小正方形是按一定的规律排列,根据此规律,第10个图中小正方形的个数为(  )
A.80B.81C.82D.83

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,将矩形ABCD纸片对折,设折痕为MN,再通过折叠使B点落在折线段MN上的B',设两条线段的交点为F,连接BF、EB'、FB'、AB'.
(1)求∠ABB'的度数;
(2)若AB=6,求四边形BFB'E的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC中,∠ACB=120°,点M为△ABC外一点,且∠AMB=60°,若CM平分∠AMB.求证:AM+BM=$\sqrt{3}$CM.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.抛物线y=$\frac{1}{3}$x2+bx+c经过A(-4,0),B(2,0)两点,与y轴交于点C,顶点为D,对称轴与x轴交于点H,过点H的直线m交抛物线于P,Q两点,其中点P位于第二象限,点Q在y轴的右侧.
(1)求D点的坐标;
(2)若∠PBA=$\frac{1}{2}$∠OBC,求P点坐标;
(3)设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,E是正方形ABCD中CD边上的一点,AE交对角线BD于点P,过点P作AE的垂线交BC于点G,连AG交对角线BD于点Q.
(1)求证:AP=PG.
(2)线段BQ、PQ、PD有何数量关系?证明你的结论;
(3)若AB=4,过点G作GF⊥BD于F,直接写出GF+PD=2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.图中,已知AB=12cm,及AC=16cm,M是BC的中点,D点及E点分别在AB和AC之上并且$\frac{AD}{AE}$=$\frac{1}{2}$,求$\frac{DX}{XE}$的值.

查看答案和解析>>

同步练习册答案