精英家教网 > 初中数学 > 题目详情

【题目】如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m,AB和CD之间有一观景池,小南在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°(点B、E、D在同一直线上),求两幢建筑物之间的距离BD.(结果精确到0.1m).

【答案】两幢建筑物之间的距离BD约为36.7m.

【解析】试题分析:在RTABE中,根据正切函数可求得BE,在RTDEC中,根据等腰直角三角形的性质求得ED,然后根据BD=BE+ED求解即可.

试题解析:由题意得:∠AEB=42°,DEC=45°.ABBD,DCBD,

∴在RtABE中,∠ABE=90°,AB=15,AEB=42°,

tanAEB=

BE=≈15÷0.90=

RtDEC中,∠CDE=90°,DEC=DCE=45°,CD=20,

ED=CD=20,

BD=BE+ED=+20≈36.7m.

答:两幢建筑物之间的距离BD约为36.7m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的个数有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】abc是正数,下列各式,从左到右的变形不能用如图验证的是(  )

A. b+c2b2+2bc+c2

B. ab+c)=ab+ac

C. a+b+c2a2+b2+c2+2ab+2bc+2ac

D. a2+2abaa+2b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习利用三角函数测高后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:

1)在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°

2)在测点C与山脚B之间的D处安置测倾器(CDB在同一直线上,且CD之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°

3)测得测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;

已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB.(1.732,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD,顶点A(13)B(11)C(31),规定把正方形ABCD先沿x轴翻折,再向左平移1个单位为一次交换,如此这样,连续经过2 020次变换后,正方形ABCD的对角线交点M的坐标变为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”

(1)王老师为什么说他搞错了?试用方程的知识给予解释;

(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的环保知识考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:

(1)本次抽查的样本容量是   ;在扇形统计图中,m=   ,n=   ,“答对8所对应扇形的圆心角为   度;

(2)将条形统计图补充完整;

(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点0 RtABC斜边AB上的一点,以OA 为半径的☉OBC切于点D,与AC 交于点E,连接AD.

(1) 求证: AD平分∠BAC;

(2)若∠BAC= 60°,OA=4,求阴影部分的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,延长至点,使,连接,以为直角边在左侧作等腰三角形,其中,连接.

1)求证:

2)若,求的长.

3有何位置关系?请说明理由.

查看答案和解析>>

同步练习册答案