精英家教网 > 初中数学 > 题目详情

【题目】学习利用三角函数测高后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:

1)在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°

2)在测点C与山脚B之间的D处安置测倾器(CDB在同一直线上,且CD之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°

3)测得测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;

已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB.(1.732,结果保留整数)

【答案】411米.

【解析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造边角关系,进而可求出答案.

试题解析:设AH=x米,在RtEHG中,∵∠EGH=45°GH=EH=AE+AH=x+12GF=CD=288米,HF=GH+GF=x+12+288=x+300,在RtAHF中,∵∠AFH=30°AH=HFtanAFH,即x=x+300,解得x=150+1).AB=AH+BH≈409.8+1.5≈411(米),凤凰山与中心广场的相对高度AB大约是411米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3.

(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;

(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)

【答案】(1)反比例函数的解析式为y=;(2)S阴影=6π-.

【解析】分析:(1)根据tan30°=,求出AB,进而求出OA,得出A的坐标,设过A的双曲线的解析式是y=,把A的坐标代入求出即可;(2)求出∠AOA′,根据扇形的面积公式求出扇形AOA′的面积,求出OD、DC长,求出△ODC的面积,相减即可求出答案.

本题解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴点A的坐标为(3,3).

设反比例函数的解析式为y= (k≠0),

∴3,∴k=9,则这个反比例函数的解析式为y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由题意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S阴影=S扇形AOA′-SODC=6π.

点睛:本题考查了勾股定理、待定系数法求函数解析式、特殊角的三角函数值、扇形的面积及等腰三角形的性质,本题属于中档题,难度不大,将不规则的图形的面积表示成多个规则图形的面积之和是解答本题的关键.

型】解答
束】
26

【题目】矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.

(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.

① 求证:△OCP∽△PDA;

② 若△OCP与△PDA的面积比为1:4,求边AB的长.

(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙OBC是直径,∠BAD=120°AB=AD

1)求证:四边形ABCD是等腰梯形;

2)已知AC=6,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:

鸭的质量/千克

1

1.5

2

2.5

3

3.5

4

烤制时间/分

60

80

100

120

140

160

180

设鸭的质量为x千克,烤制时间为t,估计当x=2.9千克时,t的值为________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BAD是由BEC在平面内绕点B旋转60°而得,且ABBC,BE=CE,连接DE.

(1)求证:BDE≌△BCE;

(2)试判断四边形ABED的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在Rt△ABC中,∠C=90°,D是BC边上一点,AC=6,CD=3,∠ADC=α.

(1)试写出α的正弦、余弦、正切这三个函数值;

(2)若∠B与∠ADC互余,求BD及AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m,AB和CD之间有一观景池,小南在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°(点B、E、D在同一直线上),求两幢建筑物之间的距离BD.(结果精确到0.1m).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】东营市某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.

(1)这次统计共抽取_____本书籍,扇形统计图中的m=______,∠α的度数是_____

(2)请将条形统计图补充完整;

(3)估计全校师生共捐赠了多少本文学类书籍.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是(  )

A. x1=1,x2=﹣1 B. x1=1,x2=2 C. x1=1,x2=0 D. x1=1,x2=3

查看答案和解析>>

同步练习册答案