精英家教网 > 初中数学 > 题目详情

【题目】如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°,已知教学楼AB高4米.
(1)求教学楼与旗杆的水平距离AD;(结果保留根号)
(2)求旗杆CD的高度.

【答案】
(1)

解:∵教学楼B点处观测到旗杆底端D的俯角是30°,

∴∠ADB=30°,

在Rt△ABD中,∠BAD=90°,∠ADB=30°,AB=4m,

∴AD= = =4 (m),

答:教学楼与旗杆的水平距离是4 m.


(2)

解:∵在Rt△ACD中,∠ADC=90°,∠CAD=60°,AD=4 m,

∴CD=ADtan60°=4 × =12(m),

答:旗杆CD的高度是12m.


【解析】(1)根据题意得出∠ADB=30°,进而利用锐角三角函数关系得出AD的长;
    (2)利用(1)中所求,结合CD=ADtan60°求出答案.此题主要考查了解直角三角的应用,正确应用锐角三角函数关系是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:

解方程=1

老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:

解:方程两边同时乘以6,得×6﹣×6=1…………①

去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②

去括号,得:4﹣6x﹣3x+15=1……………③

移项,得:﹣6x﹣3x=1﹣4﹣15…………④

合并同类项,得﹣9x=﹣18……………⑤

系数化1,得:x=2………………⑥

上述小明的解题过程从第   步开始出现错误,错误的原因是   

请帮小明改正错误,写出完整的解题过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现从A,B两市场向甲、乙两地运送水果,A,B两个水果市场分别有水果3515吨,其中甲地需要水果20吨,乙地需要水果30吨,从A到甲地运费50/吨,到乙地30/吨;从B到甲地运费60/吨,到乙地45/

(1)设A市场向甲地运送水果x吨,请完成表:

运往甲地(单位:吨)

运往乙地(单位:吨)

A市场

x

   

B市场

   

   

(2)设总运费为W元,请写出Wx的函数关系式,写明x的取值范围;

(3)怎样调运水果才能使运费最少?运费最少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】仔细观察下面的日历回答下列问题:

(1)任意用正方形框圈出四个日期如果正方形框中的第一个数(左上角的数)为用代数式表示正方形框中的四个数的和;

(2)若将正方形框上下左右移动可框住另外的四个数这四个数的和能等于吗?如果能依次写出这四个数;如果不能请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在ABC中,∠B <C,AD,AE分别是ABC的高和角平分线。

(1)若∠B=30°,C=50°,试确定∠DAE的度数;

(2)试写出∠DAE,B,C的数量关系,并证明你的结论。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加强公民的节水意识合理利用水资源某市采用价格调控的手段达到节水的目的该市自来水收费的价目表如下表(注:水费按月份结算表示立方米):请根据上表的内容解答下列问题:

(1)填空:若该户居民月份用水则应收水费___________元;

(2)若该户居民月份用水 (其中),则应收水费多少元?

价目表

每月用水量

单价

不超过6的部分

2/

超出6不超出10的部分

4/

超出10的部分

8/

(3)若该户居民两个月共用水月份用水量超过了月份)月份用水求该户居民两个月共交水费多少元?(答案可含有

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知是等边三角形,DBC边上的一个动点D不与BC重合是以AD为边的等边三角形,过点FBC的平行线交射线AC于点E,连接BF

如图1,求证:

请判断图1中四边形BCEF的形状,并说明理由;

D点在BC边的延长线上,如图2,其它条件不变,请问中结论还成立吗?如果成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB10AC2BC边上的高AD6,则另一边BC等于_______

【答案】106

【解析】试题解析:根据题意画出图形,如图所示,

如图1所示,AB=10,AC=2AD=6,

在RtABD和RtACD中,

根据勾股定理得:BD==8,CD==2,

此时BC=BD+CD=8+2=10;

如图2所示,AB=10,AC=2AD=6,

在RtABD和RtACD中,

根据勾股定理得:BD==8,CD==2,

此时BC=BD-CD=8-2=6,

BC的长为6或10.

型】填空
束】
12

【题目】在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 ______ y2.(填“>”“<”或“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线ABCD相交于点OOE是∠BOD的平分线,OFOE,∠BOE=20°.

(1)求∠AOC的度数;

(2)求∠COF的度数.

查看答案和解析>>

同步练习册答案