精英家教网 > 初中数学 > 题目详情

【题目】如图,已知直线ABCD相交于点OOE是∠BOD的平分线,OFOE,∠BOE=20°.

(1)求∠AOC的度数;

(2)求∠COF的度数.

【答案】(1)40°;(2)110°.

【解析】试题分析:1)根据角平分线的性质可得∠DOE=BOE= BOD,再由∠BOE=20°可得∠BOD的度数,然后再根据对顶角相等可得答案;
2)根据垂直定义可得∠EOF=90°,再利用平角定义计算出∠AOF的度数,然后可得∠COF的度数.

试题解析:

1OE是∠BOD的平分线,
∴∠DOE=BOE=BOD
∵∠BOE=20°
∴∠BOD=40°
∴∠AOC=40°
2EOFOO
∴∠EOF=90°
∵∠BOE=20°
∴∠AOF=180°-90°-20°=70°
∴∠COF=70°+40°=110°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°,已知教学楼AB高4米.
(1)求教学楼与旗杆的水平距离AD;(结果保留根号)
(2)求旗杆CD的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.

(1)证明:AF=CE;

(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BEAC相交于点M,则∠ADM的度数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两种客车共7辆,已知甲种客车载客量是30人,乙种客车载客量是45人.其中,每辆乙种客车租金比甲种客车多100元,5辆甲种客车和2辆乙种客车租金共需2300元.

(1)租用一辆甲种客车、一辆乙种客车各多少元?

(2)设租用甲种客车x辆,总租车费为y元,求yx的函数关系;在保证275名师生都有座位的前提下,求当租用甲种客车多少辆时,总租车费最少,并求出这个最少费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据: ≈1.73, ≈1.41.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是⊙O上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠CAD.

(1)求证:直线MN是⊙O的切线;
(2)若CD=3,∠CAD=30°,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎.该打车方式的计价规则如图①所示,若车辆以平均速度vkm/h行驶了skm,则打车费用为(ps+60q·)元(不足9元按9元计价).小明某天用该打车方式出行,按上述计价规则,其打车费用y(元)与行驶里程x(km)的函数关系也可由如图②表示.

(1)当x≥6时,求yx的函数关系式.

(2)若p=1,q=0.5,求该车行驶的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工程交由甲、乙两个工程队来完成,已知甲工程队单独完成需要60天,乙工程队单独完成需要40

(1)若甲工程队先做30天后,剩余由乙工程队来完成,还需要用时   

(2)若甲工程队先做20天,乙工程队再参加,两个工程队一起来完成剩余的工程,求共需多少天完成该工程任务?

查看答案和解析>>

同步练习册答案