【题目】如图1,Rt△ABC中,∠ACB=Rt∠,AC=8,BC=6,点D为AB的中点,动点P从点A出发,沿AC方向以每秒1个单位的速度向终点C运动,同时动点Q从点C出发,以每秒2个单位的速度先沿CB方向运动到点B,再沿BA方向向终点A运动,以DP,DQ为邻边构造PEQD,设点P运动的时间为t秒.
(1)当t=2时,求PD的长;
(2)如图2,当点Q运动至点B时,连结DE,求证:DE∥AP.
(3)如图3,连结CD.
①当点E恰好落在△ACD的边上时,求所有满足要求的t值;
②记运动过程中PEQD的面积为S,PEQD与△ACD的重叠部分面积为S1,当<时,请直接写出t的取值范围是 ______ .
【答案】(1)(2)证明见解析(3)①分三种情况讨论:满足要求的t的值为或或.②当<时, t的取值范围是<t<.
【解析】(1)如图1中,作DF⊥CA于F,
当t=2时,AP=2,DF=ADsinA=5×=3,
∵AF=ADcosA=5×=4,
∴PF=4-2=2,
∴PD===.
(2)如图2中,
在平行四边形PEQD中,
∵PE∥DQ,
∴PE∥AD,
∵AD=DQ.PE=DQ,
∴PE=AD,
∴四边形APED是平行四边形,
∴DE∥AP.
(3)①分三种情况讨论:
Ⅰ.当点E在CA上时,
DQ⊥CB(如图3所示),
∵∠ACB=Rt∠,CD是中线,∴CD=BD,∴CQ=CB=3即:t=
Ⅱ.当点E在CD上,且点Q在CB上时 (如图4所示),
过点E作EG⊥CA于点G,过点D作DH⊥CB于点H,
易证Rt△PGE≌Rt△PHQ,∴PG=DH=4,
∴CG=4-t,GE=HQ=CQ-CH=2t-3,
∵CD=AD,∴∠DCA=∠DAC
∴在Rt△CEG中,tan∠ECG===,∴t=
Ⅲ.当点E在CD上,且点Q在AB上时(如图5所示),过点E作EF⊥CA于点F,
∵CD=AD,∴∠CAD=∠ACD.
∵PE∥AD,∴∠CPE=∠CAD=∠ACD,∴PE=CE,
∴PF=PC=,PE=DQ=11-2t,
∴在Rt△PEF中,cos∠EPF===
∴t=
综上所述,满足要求的t的值为或或.
②如图6中,PE交CD于E′,作E′G′⊥AC于G′,EG⊥AC于G.
当△PDE′的面积等于平行四边形PEDQD的面积的时,PE′:EE′=2:1,
由(Ⅱ)可知CG=4-t,GE=2t-3,
∴PG=8-t-(4-t)=4,
∵E′G′∥EG,
∴===,
∴PG′=,E′G′=(2t-3),CG′=8-t-=-t,
∵tan∠ECG==,
解得t=.
如图7中,当点Q在AB上时,PE交CD于E′,作E′G′⊥AC于G′.
∵△PDE′的面积等于平行四边形PEDQD的面积的,
∴PE′:EE′=2:1,
由Ⅲ可知,PG′=PC=4-t,PE′=DQ=(11-2t),
∵cos∠E′PG′==,
∴,
解得t=,
综上所述,当<时,请直接写出t的取值范围是<t<.
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的对角线AC与BD交于点O,AC=6,BD=8.动点E从点B出发,沿着B﹣A﹣D在菱形ABCD的边上运动,运动到点D停止.点F是点E关于BD的对称点,EF交BD于点P,若BP=x,△OEF的面积为y,则y与x之间的函数图象大致为( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据题意解答
(1)已知x= +1,y= ﹣1,求下列各式的值. ①x2+2xy+y2
②x2﹣y2
(2)先化简,再求值: ÷( ﹣a),其中a= ﹣2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0),则下列结论中,正确的是( )
A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将二次函数y=x2-m(其中m>0)的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,形成新的图象记为y1,另有一次函数y=x+b的图象记为y2,则以下说法:
①当m=1,且y1与y2恰好有三个交点时b有唯一值为1;
②当b=2,且y1与y2恰有两个交点时,m>4或0<m<;
③当m=-b时,y1与y2一定有交点;
④当m=b时,y1与y2至少有2个交点,且其中一个为(0,m).
其中正确说法的序号为 ______ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.
(1)求证:DE是⊙O的切线;
(2)若AE=6,∠D=30°,求图中阴影部分的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com