【题目】已知:把Rt△ABC和Rt△DEF按如图甲摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠BAC=∠DEF=90°,∠ABC=45°,BC=9cm,DE=6cm,EF=8cm.如图乙,△DEF从图甲的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△DEF的顶点F出发,以3cm/s的速度沿FD向点D匀速移动.当点P移动到点D时,P点停止移动,△DEF也随之停止移动.DE与AC相交于点Q,连接BQ、PQ,设移动时间为t(s).解答下列问题:
(1)设三角形BQE的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围;
(2)当t为何值时,三角形DPQ为等腰三角形?
(3)是否存在某一时刻t,使P、Q、B三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.
【答案】(1)();(2)见解析;(3)当s,点P、Q、B三点在同一条直线上.
【解析】
试题分析:(1)在Rt△DEF中由勾股定理可以得到DF=10.同理,在Rt△ABC中,∠ABC=45°,所以△ABC为等腰直角三角形;由DE⊥BC,∠ACB=45°,知△QEC也是等腰直角三角形,所以,QE=CE=t,则BE=BC﹣CE=9﹣t;则△BQE的面积y=BEQE(0<t≤);
(2)在Rt△DEF中,DE=6,DF=10,所以,cos∠D=,sin∠D=;在Rt△PDG中,通过sin∠D求得PG、cos∠D解得DG,
那么GQ=DQ﹣DG;在Rt△PGQ中,利用勾股定理,求得PQ2.若△DPQ为等腰三角形时,分三种情况:①若DP=DQ;②若DP=PQ;③当DQ=PQ时;
(3)①当t=0时,点B、P、Q在同一条直线上;
②当B、Q、P在同一直线上时,过点P作DE的垂线,垂足为G,则PG∥BE,△DPG∽△DFE;然后由相似三角形的对应边成比例求得 PG、DG的值,而DQ=6﹣t,所以求得GQ=DQ﹣DG的值,根据平行线的判定定理知GP∥BE,可证△GPQ∽△QBE,所以,
GP:BE=GQ:EQ,从而解得t=,点B、Q、P在同一直线上.
解:(1)∠ACB=45°,∠DEF=90°,
∴∠EQC=45°.
∴EC=EQ=t,
∴BE=9﹣t.
∴,
即:()
(2)①当DQ=DP时,∴6﹣t=10﹣3t,解得:t=2s.
②当PQ=PD时,过P作PH⊥DQ,交DE于点H,
则DH=HQ=,由HP∥EF,
∴则,解得s
③当QP=QD时,过Q作QG⊥DP,交DP于点G,
则GD=GP=,可得:△DQG∽△DFE,
∴,则,
解得s
(3)假设存在某一时刻t,
使点P、Q、B三点在同一条直线上.
则,过P作PI⊥BF,交BF于点I,
∴PI∥DE,
于是:,
∴,,
∴,则,
解得:s.
答:当s,点P、Q、B三点在同一条直线上.
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系xOy中,正比例函数y=x的图象经过点A,点A的纵坐标为4,反比例函数y=的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:
(1)这个反比例函数的解析式;
(2)直线AB的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,假命题的个数是( )
①垂直于半径的直线一定是这个圆的切线;
②圆有且只有一个外切三角形;
③三角形有且只有一个内切圆;
④三角形的内心到三角形的三个顶点的距离相等.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角三角板ABC的斜边AB=12cm,∠A=30°,将三角板ABC绕C顺时针旋转90°至三角板A'B'C'的位置后,再沿CB方向向左平移,使点B'落在原三角板ABC的斜边AB上,则三角板A'B'C'平移的距离为( )
A.6cm B.4cm C.(6﹣)cm D.()cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2=( )
A. 4 B. 6 C. 8 D. 不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列生活现象中,不是平移现象的是( )
A. 站在运行的电梯上的人 B. 左右推动的推拉窗帘
C. 小亮荡秋千的运动 D. 坐在直线行驶的列车上的乘客
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com