4.解下列分式方程:
(1)$\frac{2-x}{x-3}$+$\frac{1}{3-x}$=1
(2)$\frac{2x}{x+1}$=1-$\frac{x}{3x+3}$.
分析 (1)分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解答 解:(1)去分母得:2-x-1=x-3,
解得:x=3,
经检验x=3是分式方程的解;
(2)去分母得:6x=3x+3-x,
解得:x=$\frac{3}{4}$,
经检验x=$\frac{3}{4}$是分式方程的解.
点评 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.