精英家教网 > 初中数学 > 题目详情

【题目】如图所示,抛物线y=ax2+bx+c的对称轴为x=,与x轴的一个交点A(,0),抛物线的顶点B纵坐标1<yB<2,则以下结论:①abc<0;b2-4ac>0;3a-b=0;4a+c<0;<a<.其中正确结论的个数是( )

A. 2 B. 3 C. 4 D. 5

【答案】B

【解析】

由抛物线开口方向,对称轴的位置以及与轴的交点位置,确定的正负,由抛物线与x轴有两个交点得到b2-4ac>0;抛物线y=ax2+bx+c的对称轴为x=,即可判断③抛物线与x轴的一个交点A(,0),得到 把把b=3a代入即可判断④,根据抛物线的顶点B纵坐标1<yB<2,即可判断⑤.

①∵抛物线开口向下,

a<0,

∵对称轴是:

ab异号,

b>0,

∵抛物线与y轴交于正半轴,

c>0,

abc<0,

∴选项①正确;

②∵抛物线与x轴有两个交点,

b2-4ac>0

选项②正确;

③抛物线对称轴是:

b=3a

3a+b=0,

∴选项③不正确;

④抛物线与x轴的一个交点A(,0),

b=3a代入得:

故选项④正确;

⑤由对称性得:抛物线与x轴的另一个交点为

抛物线的方程为:

抛物线的顶点B纵坐标1<yB<2,

解得:

∴选项⑤不正确;

正确的有3个,

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=BC=2,ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1BAC于点E,A1C1分别交AC、BCD、F两点.

(1)如图1,观察并猜想,在旋转过程中,线段BEBF有怎样的数量关系?并证明你的结论;

(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.

(1)求证:ABE∽△DEF;

(2)若正方形的边长为4,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形的A1B1P1P2顶点P1、P2在反比例函数y= (x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y= (x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方格纸中每个小正方形的边长都是单位1,OAB在平面直角坐标系中的位置如图所示.解答问题:

(1)请按要求对ABO作如下变换:

OAB向下平移2个单位,再向左平移3个单位得到O1A1B1

以点O为位似中心,位似比为2:1,将ABC在位似中心的异侧进行放大得到OA2B2

(2)写出点A1,A2的坐标:

(3)OA2B2的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,并解决问题:任意一个大于1的正整数m都可以表示为:m=p2+q(p、q是正整数,在m的所有这种表示中,如果最小时,规定:F(m)=.例如:21可以表示为:21=12+20=22+17=32+12=42+5,因为>>>,所以F(21)=

(1)F(33)的值;

(2)如果一个正整数n可以表示为t2-t(其中t≥2,且是正整数),那么称n是次完全平方数,证明:任何一个次完全平方数n,都有F(n)=1;

(3)一个三位自然数k,k=100a+10b+c(其中1≤a≤9,0≤b≤9,0≤c≤9,且a≤c,a、b、c为整数),满足十位上的数字恰好等于百位上的数字与个位上的数字之和,且k与其十位上数字的2倍之和能被9整除,求所有满足条件的kF(k)的最小值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,AB=AC,DEBC,点F在边AC上,DFBE相交于点G,且∠EDF=ABE.

求证:(1)DEF∽△BDE;(2)DGDF=DBEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点.

(1)求抛物线的解析式和顶点坐标;

(2)P为抛物线上一点,若SPAB=10,求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】周末,小凯和同学带着皮尺,去测量杨大爷家露台遮阳篷的宽度.如图,由于无法直接测量,小凯便在楼前地面上选择了一条直线EF,通过在直线EF上选点观测,发现当他位于N点时,他的视线从M点通过露台D点正好落在遮阳篷A点处;当他位于N′点时,视线从M′点通过D点正好落在遮阳篷B点处,这样观测到的两个点AB间的距离即为遮阳篷的宽.已知ABCDEF,点CAG上,AGDEMNMN′均垂直于EFMNMN′,露台的宽CDGE.实际测得,GE=5米,EN=15.5米,NN′=6.2米.请根据以上信息,求出遮阳篷的宽AB是多少米?

查看答案和解析>>

同步练习册答案