精英家教网 > 初中数学 > 题目详情
4.如图.在△ABC中,AB=AC,D为△ABC外一点,连结AD,交BC于点E,连结DB,若∠C=∠D,AE=8,DE=2.求AC的长.

分析 由AB=AC知∠ABE=∠C,结合∠C=∠D得∠ABE=∠D,利用∠BAE=∠DAB证△ABE∽△ADB得$\frac{AB}{AD}=\frac{AE}{AB}$,从而得出AB=AC=4$\sqrt{5}$.

解答 解:如图,

∵AB=AC,
∴∠ABE=∠C,
∵∠C=∠D,
∴∠ABE=∠D,
又∵∠BAE=∠DAB,
∴△ABE∽△ADB,
∴$\frac{AB}{AD}=\frac{AE}{AB}$,即$\frac{AB}{8+2}$=$\frac{8}{AB}$,
解得:AB=4$\sqrt{5}$,
∴AC=AB=4$\sqrt{5}$.

点评 本题主要考查相似三角形的判定与性质及等腰三角形的性质,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.下列算式结果为-3的是(  )
A.-31B.(-3)0C.3-1D.(-3)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.【阅读理解】当a>0,b>0时,a=($\sqrt{a}$)2,b=($\sqrt{b}$)2则($\sqrt{a}$-$\sqrt{b}$)2=($\sqrt{a}$)2-2$\sqrt{ab}$+($\sqrt{b}$)2=a+b-2$\sqrt{ab}$≥0,那么$\frac{a+b}{2}$≥$\sqrt{ab}$,因此对任意两个正数a,b,即a>0,b>0,则有下面的不等式;$\frac{a+b}{2}$$≥\sqrt{ab}$,当且仅当a=b时取等号,我们把$\frac{a+b}{2}$叫做正数a,b的算术平均数,把$\sqrt{ab}$叫做正数a,b的几何平均数,于是上述的不等式可以表述为:两个正数的算术平均数不小于(即大于或等于)他们的几何平均数,它在数学中有广泛的应用,是解决最大(小)值问题的有力工具.
【实例剖析】已知x>0,求式子y=x+$\frac{4}{x}$的最小值.
解:令a=x,b=$\frac{4}{x}$,则由$\frac{a+b}{2}$≥$\sqrt{ab}$,得y=x+$\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=2×$\sqrt{4}$=4,当且仅当x=$\frac{4}{x}$时,即x=2时,式子的最小值,最小值为4.
【学以致用】根据上面的阅读材料回答下列问题:
(1)已知x>0,则当x为$\frac{\sqrt{6}}{2}$时,式子y=2x+$\frac{3}{x}$取到最小值,最小值是2$\sqrt{6}$.
(2)用篱笆围一个面积为64m2的矩形花园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短是多少米?
(3)已知x>0,则当x取何值时,式子y=$\frac{x}{{x}^{2}-2x+9}$取到最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.计算:(-3)2017•(-$\frac{1}{3}}$)2016=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,∠PAQ=∠MBN=30°,∠MBN的顶点B在射线AP上,射线BM和射线BN分别交射线AQ于点C、D,当∠MBN绕点B转动时.若AB=2$\sqrt{3}$,则CA•CD的最小值是(  )
A.3B.$\sqrt{3}$C.4D.12

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,要建造一个直角梯形的花圃,要求AD边靠墙,CD⊥AD,AB:CD=5:4,另外三边的和为20米,设AB的长为5x米
(1)求出AD的长;(用含字母x的式子表示)
(2)若该花圃的面积为50平方米,且周长不大于30米,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.我们用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的七折出售;乙商店的优惠条件是,从第一本起按标价的八五折出售.
(1)若要购买22本练习本,到哪个商店购买更省钱.
(2)现有24元,最多可买多少本练习本?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图是三条两两相交的笔直公路,现欲修建一个加油站,使它到三条公路的距离相等,这个加油站应建在(  )
A.△ABC三边的中线的交点上B.△ABC三边垂直平分线的交点上
C.△ABC三条边高的交点上D.△ABC三内角平分线的交点上

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.从下列四张卡片中任取一张,卡片上的图形既是轴对称又是中心对称图形的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

同步练习册答案