【题目】已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 .
【答案】(2,4)或(3,4)或(8,4)
【解析】解:当OD=PD(P在右边)时,根据题意画出图形,如图所示:
过P作PQ⊥x轴交x轴于Q,在直角三角形DPQ中,PQ=4,PD=OD= OA=5,
根据勾股定理得:DQ=3,故OQ=OD+DQ=5+3=8,则P1(8,4);
当PD=OD(P在左边)时,根据题意画出图形,如图所示:
过P作PQ⊥x轴交x轴于Q,在直角三角形DPQ中,PQ=4,PD=OD=5,
根据勾股定理得:QD=3,故OQ=OD﹣QD=5﹣3=2,则P2(2,4);
当PO=OD时,根据题意画出图形,如图所示:
过P作PQ⊥x轴交x轴于Q,在直角三角形OPQ中,OP=OD=5,PQ=4,
根据勾股定理得:OQ=3,则P3(3,4),
综上,满足题意的P坐标为(2,4)或(3,4)或(8,4).
故答案为:(2,4)或(3,4)或(8,4)
分PD=OD(P在右边),PD=OD(P在左边),OP=OD三种情况,根据题意画出图形,作PQ垂直于x轴,找出直角三角形,根据勾股定理求出OQ,然后根据图形写出P的坐标即可.
科目:初中数学 来源: 题型:
【题目】如图,直线l:y= x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1 , 过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2015的坐标为( )
A.(0,42015)
B.(0,42014)
C.(0,32015)
D.(0,32014)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点O为坐标原点,点B和点C分别是x轴的正半轴和y轴的正半轴上的两点,且OB:BC=1:,直线BC的解析式为y=﹣kx+6k(k≠0).
(1)如图1,求点C的坐标;
(2)如图2,点D为OB中点,点E为OC中点,点F在y轴的负半轴上,点A是射线FD上的第一象限的点,连接AE、ED,若FD=DA,且S△AED=,求点A的坐标;
(3)如图3,在(2)的条件下,点P在线段OB上,点Q在线段OC的延长线上,CQ=BP,连接PQ与BC交于点M,连接AM并延长AM到点N,连接QN、AP、AB和NP,若∠QPA﹣∠NQO=∠NQP﹣∠PAB,NP=2,求直线PQ的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】市政府要求武汉轻轨二七路段工程12个月完工。现由甲、乙两工程队参与施工,已知甲队单独完成需要16个月,每月需费用600万元;乙队单独完成需要24个月,每月需费用400万元。由于前期工程路面较宽,可由甲、乙两队共同施工。随着工程的进行,路面变窄,两队再同时施工,对交通影响较大,为了减小对解放大道的交通秩序的影响,后期只能由一个工程队施工.工程总指挥部结合实际情况现拟定两套工程方案:
①先由甲、乙两个工程队合做m个月后,再由甲队单独施工,保证恰好按时完成.
②先由甲、乙两个工程队合做n个月后,再由乙队单独施工,也保证恰好按时完成.
⑴求两套方案中m和n的值;
⑵通过计算,并结合施工费用及施工对交通的影响,你认为该工程总指挥部应该选择哪种方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.
(1)猜想ED与⊙O的位置关系,并证明你的猜想;
(2)若AB=6,AD=5,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在等腰梯形ABCD中,AD//BC,∠BDC=∠BCD,点E是线段BD上一点,且BE=AD.
(1)证明:△ADB≌△EBC;
(2)直接写出图中所有的等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆两种型号客车作为交通工具.
下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
型号 | 载客量 | 租金单价 |
30人/辆 | 380元/辆 | |
20人/辆 | 280元/辆 |
注:载客量指的是每辆客车最多可载该校师生的人数.设学校租用型号客车辆,租车总费用为元.
(1)求与的函数解析式,请直接写出的取值范围;
(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角梯形ABCD中,AB//DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C﹣D﹣A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l//AD,与线段CD的交点为E,与折线A﹣C﹣B的交点为Q.点M运动的时间为t(秒).
(1)当t=0.5时,求线段QM的长;
(2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;
(3)当t>2时,连接PQ交线段AC于点R.请探究 是否为定值,若是,试求这个定值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.
(1)求证:△ABO≌△DCO;
(2)△OBC是何种三角形?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com