精英家教网 > 初中数学 > 题目详情

【题目】如图,直角梯形ABCD中,AB//DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C﹣D﹣A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l//AD,与线段CD的交点为E,与折线A﹣C﹣B的交点为Q.点M运动的时间为t(秒).

(1)当t=0.5时,求线段QM的长;
(2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;
(3)当t>2时,连接PQ交线段AC于点R.请探究 是否为定值,若是,试求这个定值;若不是,请说明理由.

【答案】
(1)

解:过点C作CF⊥AB于F,则四边形AFCD为矩形.

∴CF=4,AF=2,

此时,Rt△AQM∽Rt△ACF,

=

=

∴QM=1


(2)

解:∵∠DCA为锐角,故有两种情况:

①当∠CPQ=90°时,点P与点E重合,

此时DE+CP=CD,即t+t=2,∴t=1,在0<t<2内,

②当∠PQC=90°时,如备用图1,

此时Rt△PEQ∽Rt△QMA,∴ =

由(1)知,EQ=EM﹣QM=4﹣2t,

而PE=PC﹣CE=PC﹣(DC﹣DE)=t﹣(2﹣t)=2t﹣2,

=

∴t= ,在0<t<2内;

综上所述,t=1或


(3)

解: 为定值.

当t>2时,如备用图2,PA=DA﹣DP=4﹣(t﹣2)=6﹣t,

由(1)得,BF=AB﹣AF=4,

∴CF=BF,

∴∠CBF=45°,

∴QM=MB=6﹣t,

∴QM=PA,

∵AB//DC,∠DAB=90°,

∴四边形AMQP为矩形,

∴PQ//AB,

∴△CRQ∽△CAB,

= = = =


【解析】(1)过点C作CF⊥AB于F,则四边形AFCD为矩形,易知CF=4,AF=2,利用平行线分线段成比例定理的推论可知Rt△AQM∽Rt△ACF,那么可得比例线段,从而求出QM;(2)由于∠DCA为锐角,故有两种情况:
①当∠CPQ=90°时,点P与点E重合,可得DE+CP=CD,从而可求t;②当∠PQC=90°时,如备用图1,容易证出Rt△PEQ∽Rt△QMA,再利用比例线段,结合EQ=EM﹣QM=4﹣2t,可求t;(3) 为定值.当t>2时,如备用图2,先证明四边形AMQP为矩形,再利用平行线分线段成比例定理的推论可得△CRQ∽△CAB,再利用比例线段可求
【考点精析】关于本题考查的相似三角形的应用,需要了解测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)用公式法解方程:x2﹣5x+3=0;

(2)用因式分解法解方程:3(x﹣3)2=2x﹣6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的平面直角坐标系中表示下面各点:

A03);B1-3);C3-5);D-3-5);E35);F57);G50

1A点到原点O的距离是

2)将点C轴的负方向平移6个单位,它与点 重合。

3)连接CE,则直线CE轴是什么关系?

4)点F分别到轴的距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y= x2 x﹣2与x轴交于A、B两点,点P(m,n)(n<0)为抛物线上一个动点,当∠APB为钝角时,则m的取值范围(
A.﹣1<m<0
B.﹣1<m<0或3<m<4
C.0<m<3或m>4
D.m<﹣1或0<m<3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:五莲县新玛特购物中心第一次用5000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表(注:获利=售价﹣进价)

进价(元/件)

20

30

售价(元/件)

29

40

(1)新玛特购物中心将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?

(2)该购物中心第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得总利润比第一次获得的总利润多160元,求第二次乙种商品是按原价打几折销售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下列能判定AB∥CD的条件有( )个.

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+1与y轴交于点A1 , 依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1 , 使得点A1、A2、…,An在直线x+1上,点C1、C2、…,Cn在x轴上,则点Bn的坐标是( )

A.(2n﹣1,2n﹣1
B.(2n﹣1+1,2n﹣1
C.(2n﹣1,2n﹣1)
D.(2n﹣1,n)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点O是△ABC的两条角平分线的交点,

(1)若∠A=30°,则∠BOC的大小是   

(2)若∠A=60°,则∠BOC的大小是   

(3)若∠A=n°,则∠BOC的大小是多少?试用学过的知识说明理由.

查看答案和解析>>

同步练习册答案