精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AC=BC,ABx轴于A,反比例函数y=(x0)的图象经过点C,交AB于点D,已知AB=4,BC=

(1)若OA=4,求k的值.

(2)连接OC,若AD=AC,求CO的长.

【答案】(1)k=11;(2)

【解析】试题分析:(1)利用等腰三角形的性质得出AEBE的长再利用勾股定理得出OA的长得出C点坐标即可得出答案

2)首先表示出DC点坐标进而利用反比例函数图象上的性质求出C点坐标再利用勾股定理得出CO的长.

试题解析:(1)作CEAB垂足为EAC=BCAB=4AE=BE=2

RtBCEBC=BE=2CE=OA=4C点的坐标为:(2).∵点Cy=x0)的图象上k=11

2)设A点的坐标为(m0).BD=BC=AD=DC两点的坐标分别为:(m),(m+2).

∵点CD都在y=x0)的图象上m=2m+),m=6C点的坐标为:(2),CFx垂足为FOF=CF=2.在RtOFCOC2=OF2+CF2OC==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2019年的暑假,李刚和他的父母计划去新疆旅游,他们打算坐飞机到乌鲁木齐,第二天租用一辆汽车自驾出游.

根据以上信息,解答下列问题:

1)设租车时间为天,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出关于的函数表达式;

2)请你帮助李刚,选择租用哪个公司的车自驾出游比较合算,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料,解答下列问题.

如图1,已知△ABC中,AD 为中线.延长AD至点E,使 DE=AD.在△ADC和△EDB中,AD=DE,∠ADC=EDBBD=CD,所以,△ACD≌△EBD,进一步可得到AC=BEAC//BE等结论.

在已知三角形的中线时,我们经常用“倍长中线”的辅助线来构造全等三角形,并进一步解决一些相关的计算或证明题.

解决问题:如图2,在△ABC中,AD是三角形的中线,点FAD上一点,且BF=AC,连结并延长BFAC于点E,求证:AE=EF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】赵爽(约公元182~250年),我国历史上著名的数学家与天文学家,他详细解释了《周髀算经》中勾股定理,将勾股定理表述为:勾股各自乘,并之为弦实.开方除之,即弦.又给出了新的证明方法赵爽弦图,巧妙地利用平面解析几何面积法证明了勾股定理.如图所示的赵爽弦图是由四个全等的直角三角形和中间一个小正方形拼成的一个大正方形,如果小正方形的面积为1,直角三角形较长直角边长为4,则大正方形的面积为_____________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy内,函数y=x的图象与反比例函数y=(k≠0)图象有公共点A,点A的坐标为(4,a),AB⊥x轴,垂足为点B.

(1)求反比例函数的解析式;

(2)点C是第一象限内直线OA上一点,过点C作直线CD∥AB,与反比例函数y=(k≠0)的图象交于点D,且点C在点D的上方,CD=AB,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD是正方形,ADF旋转一定角度后得到ABE,如图所示,如果AF=4AB=7

1)指出旋转中心和旋转角度.

2)求DE的长度.

3BEDF垂直吗? 说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△ADE都是等腰直角三角形,CEBD相交于点MBDAC于点N.

1)证明:BDCE

2)证明:BDCE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,BDCE分别是边ACAB上的中线,BDCE交于点O

1)如图1,若MN分别是OBOC的中点,求证:OB=2OD

2)如图2,若BD⊥CEAB=8BC=6,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)

(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;

(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?

(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?

查看答案和解析>>

同步练习册答案