【题目】在△ABC中,BD、CE分别是边AC、AB上的中线,BD与CE交于点O.
(1)如图1,若M、N分别是OB、OC的中点,求证:OB=2OD;
(2)如图2,若BD⊥CE,AB=8,BC=6,求AC的长.
【答案】(1)证明见解析;(2)
【解析】
(1)依据三角形中位线定理,即可得到DE∥BC,DE=BC,再根据相似三角形的性质即可得到结论;
(2)依据AB=8,BC=6,点D,点E分别是AC,AB的中点,即可得出BE=4,DE=3,再根据勾股定理即可得到DE2+BC2=BE2+BC2,进而得到AC的长.
解:(1)∵BD、CE分别是边AC、AB上的中线,
∴点D,点E分别是AC,AB的中点,
∴DE是△ABC的中位线,
∴DE//BC,DE=BC,
同理可证:MN//BC,MN=BC,
∴四边形DEMN是平行四边形,
∴OD=OM,
∵OB=2OM,
∴OB=2OD;
(2)∵AB=8,BC=6,点D,点E分别是AC,AB的中点,
∴BE=4, DE=3,
又∵BD⊥CE,
∴DE2=DO2+EO2,BC2=BO2+CO2,
BE2=BO2+EO2,CD2=DO2+CO2,
∴DE2+BC2=BE2+CD2,
即32+62=42+CD2,
解得CD=,
∴AC=2CD=.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于D,过点D作DE⊥AD交AB于点E,以AE为直径作⊙O
(1)求证:点D在⊙O上;
(2)求证:BC是⊙O的切线;
(3)若AC=6,BC=8,求BE的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC,AB⊥x轴于A,反比例函数y=(x>0)的图象经过点C,交AB于点D,已知AB=4,BC=.
(1)若OA=4,求k的值.
(2)连接OC,若AD=AC,求CO的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF;
(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于点G,F两点,若M,N分别是DG,CE的中点,则MN的长是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.
(1)如图1,线段EH、CH、AE之间的数量关系是 ;
(2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.
(1)求该反比例函数的解析式.
(2)求S与t的函数关系式;并求当S=时,对应的t值.
(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过点A(,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,E为射线BC上一点,DF⊥AE于F,连接DE.
(1)如图1,若E在线段BC上,且CE=EF,求证:AD=AE;
(2)若AB=6,AD=10,在点E的运动过程中,连接BF.
①当△ABF是以AB为底的等腰三角形时,求BE的长;
②当BF∥DE时,若S△ADF=m,S△DCE=n,探究m﹣n的值并简要说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com