分析 (1)根据翻折的性质和SAS证明△ABE与△ACF全等,利用全等三角形的性质得出∠AGB=90°证明即可;
(2)作IC的中点M,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可.
解答 证明:(1)∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点,
∴AD=BD=CD,∠ACB=45°,
∵在△ADC中,AD=DC,DE⊥AC,
∴AE=CE,
∵△CDE沿直线BC翻折到△CDF,
∴△CDE≌△CDF,
∴CF=CE,∠DCF=∠ACB=45°,
∴CF=AE,∠ACF=∠DCF+∠ACB=90°,
在△ABE与△ACF中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAE=∠ACF}\\{AE=CF}\end{array}\right.$,
∴△ABE≌△ACF(SAS),
∴∠ABE=∠FAC,
∵∠BAG+∠CAF=90°,
∴∠BAG+∠ABE=90°,
∴∠AGB=90°,
∴AF⊥BE;
(2)作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°![]()
∴四边形DECF是正方形,
∴EC∥DF,EC=DF,
∴∠EAH=∠HFD,AE=DF,
在△AEH与△FDH中$\left\{\begin{array}{l}{∠AHE=∠DHF}\\{∠EAH=∠HFD}\\{AE=DF}\end{array}\right.$,
∴△AEH≌△FDH(AAS),
∴EH=DH,
∵∠BAG+∠CAF=90°,
∴∠BAG+∠ABE=90°,
∴∠AGB=90°,
∴AF⊥BE,
∵M是IC的中点,E是AC的中点,
∴EM∥AI,
∴$\frac{DI}{TM}=\frac{DH}{HE}=1$,
∴DI=IM,
∴CD=DI+IM+MC=3DI,
∴AD=3DI.
点评 此题考查翻折问题,关键是利用SAS和AAS证明三角形全等,再利用全等三角形的性质进行分析解答.
科目:初中数学 来源: 题型:选择题
| A. | 3$\sqrt{3}$ | B. | 9$\sqrt{3}$ | C. | 18$\sqrt{3}$ | D. | 36$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 10 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com