| A. | 2.3 | B. | 2.4 | C. | 2.5 | D. | 2.6 |
分析 首先根据题意作图,由AB是⊙C的切线,即可得CD⊥AB,又由在直角△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理求得AB的长,然后由S△ABC=$\frac{1}{2}$AC•BC=$\frac{1}{2}$AB•CD,即可求得以C为圆心与AB相切的圆的半径的长.
解答
解:在△ABC中,
∵AB=5,BC=3,AC=4,
∴AC2+BC2=32+42=52=AB2,
∴∠C=90°,
如图:设切点为D,连接CD,
∵AB是⊙C的切线,
∴CD⊥AB,
∵S△ABC=$\frac{1}{2}$AC•BC=$\frac{1}{2}$AB•CD,
∴AC•BC=AB•CD,
即CD=$\frac{AC•BC}{AB}$=$\frac{3×4}{5}$=$\frac{12}{5}$,
∴⊙C的半径为$\frac{12}{5}$,
故选B.
点评 此题考查了圆的切线的性质,勾股定理,以及直角三角形斜边上的高的求解方法.此题难度不大,解题的关键是注意辅助线的作法与数形结合思想的应用.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | y1<y2 | B. | y1=y2 | C. | y1>y2 | D. | y1=-y2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 众数是80千米/时,中位数是60千米/时 | |
| B. | 众数是70千米/时,中位数是70千米/时 | |
| C. | 众数是60千米/时,中位数是60千米/时 | |
| D. | 众数是70千米/时,中位数是60千米/时 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com