精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点A在反比例函数y=(x>0)的图象上,作RtABC,边BCx轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若BCE的面积为4,则k=______

【答案】8

【解析】先根据题意证明BOE∽△CBA,根据相似比及面积公式得出BO×AB的值即为|k|的值,再由函数所在的象限确定k的值.

BDRtABC的斜边AC上的中线,

BD=DC,DBC=ACB,

又∠DBC=EBO,

∴∠EBO=ACB,

又∠BOE=CBA=90°,

∴△BOE∽△CBA,

,即BC×OE=BO×AB.

又∵SBEC=4,

BCEO=4,

BC×OE=8=BO×AB=|k|.

∵反比例函数图象在第一象限,k>0.

k=8.

故答案是:8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一条河的两岸BC与DE互相平行,两岸各有一排景观灯(图中黑点代表景观灯),每排相邻两景观灯的间隔都是10 m,在与河岸DE的距离为16 m的A处(AD⊥DE)看对岸BC,看到对岸BC上的两个景观灯的灯杆恰好被河岸DE上两个景观灯的灯杆遮住.河岸DE上的两个景观灯之间有1个景观灯,河岸BC上被遮住的两个景观灯之间有4个景观灯,求这条河的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间(月份)与市场售价(元/千克)的关系如下表:

上市时间(月份)

1

2

3

4

5

6

市场售价(元/千克)

10.5

9

7.5

6

4.5

3

这种蔬菜每千克的种植成本(元/千克)与上市时间(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).

1)写出上表中表示的市场售价(元/千克)关于上市时间(月份)的函数关系式;

2)若图中抛物线过点,写出抛物线对应的函数关系式;

3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为(  )

A. 5 B. 6 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ABC与∠ACB的平分线交于点F,过点FDEBC,分别交ABAC于点DE,那么下列结论:①BDFCEF都是等腰三角形;②FDE中点;③ADE的周长等于ABAC的和;④BFCF.其中正确的有(  )

A.①③B.①②③C.①②D.①④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,反比例函数(x>0)与正比例函数y=kx、 (k>1)的图象分别交于点A、B,若∠AOB=45°,则AOB的面积是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,AOBC的顶点A、C的坐标分别为A(﹣2,0)、C(0,3),反比例函数的图象经过点B.

(1)求反比例函数的表达式;

(2)这个反比例函数的图象与一个一次函数的图象交于点B、D(m,1),根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A90°AB3mBC12mCD13mDA4m

1)求这块四边形空地的面积;

2)若每平方米草皮需要200元,问学校需要投入多少资金买草皮?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,DE分别是BCAC上的动点且BD=CE,连接ADBE相交于点F,连接CF,下列结论:①△ABD≌△BCE;②∠AFB=120°;③若BD=CD,则FA=FB=FC;④∠AFC=90°,则AF=3BF,其中正确的结论共有( )

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案