精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,直线x轴交于点A,与y轴交于点B

(1)求∠BAO的度数;
(2)如图1,P为线段AB上一点,在AP上方以AP为斜边作等腰直角三角形APD.点QAD上,连结PQ,过作射线PFPQx轴于点F,作PGx轴于点G
求证:PFPQ
(3)如图2,E为线段AB上一点,在AE上方以AE为斜边作等腰直角三角形AED.若P为线段EB的中点,连接PDPO,猜想线段PDPO有怎样的关系?并说明理由.
(1)(2)证明:在等腰直角三角形APD中,,DA=DP,,∴DP⊥AD于D,由(1)可得,∴,又∵PG⊥x轴于G,∴PG = PD,∴,∴,∴,即,又∵PQ⊥PF,∴,∴,在△PGF和△PDQ中,,∴△PGF≌△PDQ,∴PF=PQ(3)
OP⊥DP,OP=DP 证明:延长DP至H,使得PH=PD,∵P为BE的中点,∴PB=PE,在△PBH和△PED中,,∴△PBH≌△PED,∴BH=ED,∴,∴BH∥ED,在等腰直角三角形ADE中,AD=ED,,∴AD=BH,,∴DE∥x轴,BH∥x轴, BH⊥y轴,∴,由(1)可得 OA=OB,在△DAO和△HBO中,,∴△DAO≌△HBO,∴OD=OH,∠5=∠6,∵,∴在等腰直角三角形△DOH中,∵DP=HP,∴OP⊥DP,,∴,∴OP=PD

试题分析:(1)
直线与x轴交于点A,与y轴交于点B,∴A(-6,0),B(0,6),∴OA=OB,∴,在△AOB中,,∴
(2)由,DA=DP,推出DP⊥AD,再利用(1)中的结论,结合图像,以及全等三角形的判定,可以推出,∴PF=PQ。
(3)由于PB=PE,以及全等三角形的判定定理推出△PBH≌△PED,由此可以推出BH∥ED,又因为在等腰直角三角形ADE中,AD=BH,,所以利用全等三角形的判定定理,推出△DAO≌△HBO,同时利用等腰直角三角形的特殊性,可以推出OP=PD
点评:本题看似复杂,实则许多地方都用到了全等三角形的判断,全等三角形在中考中是重点,也是难点,学生应该加强这方面的练习,做到举一反三。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(本题满分12分,其中第(1)小题5分,第(2)小题7分)
已知:如图,在矩形ABCD中,点EF分别在边ADBC上,EF垂直平分AC,垂足为O,联结AFCE

(1)求证:四边形AFCE是菱形;
(2)点P在线段AC上,满足,求证:CDPE

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

顺次连接四边形四边中点所组成的四边形是 (    )
A.矩形B.菱形C.正方形 D.平行四边形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

顺次连接等腰梯形的各边中点所得的四边形是___________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

国家级历史名城――金华,风光秀丽,花木葱茏,某广场上一个是平行四边形的花坛(如图),分别种有红、蓝、绿、橙、紫、黄6种颜色的花,如果AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是(     )
A.红花,绿花种植面积一定相等
B.紫花,橙花种植面积一定相等
C.红花,蓝花种植面积一定相等
D.蓝花,黄花种植面积一定相等

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,梯形ABCD中,AD∥BC,AB=CD,AD=3,BC=6,∠B=60°,则梯形ABCD的周长是  

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,平行四边形ABCD,AD=5,AB=9,点A的坐标为(-3,0),则点C的坐标为             .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,等腰梯形ABCD中,AD∥BC,AD=5㎝,BC=11㎝,高DE=4㎝,则梯形的周长是  ㎝。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知矩形ABCD中,AD=8cm,AB=6cm,对角线AC的垂直平分线交AD于E,交BC于F.

(1)试判断四边形AFCE是怎样的四边形;
(2)求出四边形AFCE的周长.

查看答案和解析>>

同步练习册答案